1,085
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Urban land use land cover classification based on GF-6 satellite imagery and multi-feature optimization

, , , &
Article: 2236579 | Received 02 Jan 2023, Accepted 10 Jul 2023, Published online: 27 Jul 2023

References

  • Abdi AMJG, Sensing R. 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci Remote Sens. 57(1):1–20. doi: 10.1080/15481603.2019.1650447.
  • Adelabu S, Mutanga O, Adam EJI. 2014. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS J Photogramm Remote Sens. 95:34–41. doi: 10.1016/j.isprsjprs.2014.05.013.
  • Ahamed T, Tian L, Zhang Y, Ting KJB. 2011. A review of remote sensing methods for biomass feedstock production. Biomass Bioenerg. 35(7):2455–2469. doi: 10.1016/j.biombioe.2011.02.028.
  • Bai Y, Sun G, Li Y, Ma P, Li G, Zhang YJI. 2021. Comprehensively analyzing optical and polarimetric SAR features for land-use/land-cover classification and urban vegetation extraction in highly-dense urban area. Int J Appl Earth Obs Geoinf. 103:102496. doi: 10.1016/j.jag.2021.102496.
  • Belgiu M, Drăguţ LJIJOP. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31. doi: 10.1016/j.isprsjprs.2016.01.011.
  • Breiman LJM. 2001. Random forests. J Clin Microbiol. 45:5–32. doi: 10.1023/A:1010933404324.
  • Brewster CC, Allen JC, Kopp DDJAE. 1999. IPM from space: using satellite imagery to construct regional crop maps for studying crop—insect interaction. Am Entomol. 45:105–117. doi: 10.1093/ae/45.2.105.
  • Cai B, Wang S, Wang L, Shao ZJ. 2019. Extraction of urban impervious surface from high-resolution remote sensing imagery based on deep learning. Int J Geogr Inf Sci. 21:1420–1429.
  • Carlson TN, Ripley DAJ. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ. 62(3):241–252. doi: 10.1016/S0034-4257(97)00104-1.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd international conference on knowledge discovery and data mining, p. 785–794.
  • Chen B, Huang B, Xu BJI. 2017. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS J Photogramm Remote Sens. 124:27–39. doi: 10.1016/j.isprsjprs.2016.12.008.
  • Chi M, Feng R, Bruzzone LJ. 2008. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv Space Res. 41(11):1793–1799. doi: 10.1016/j.asr.2008.02.012.
  • Dadashpoor H, Azizi P, Moghadasi MJ. 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci Total Environ. 655:707–719. doi: 10.1016/j.scitotenv.2018.11.267.
  • Duveiller G, Weiss M, Baret F, Defourny PJR. 2011. Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens Environ. 115(3):887–896. doi: 10.1016/j.rse.2010.11.016.
  • Ehammer A, Fritsch S, Conrad C, Lamers J, Dech S. 2010. Statistical derivation of fPAR and LAI for irrigated cotton and rice in arid Uzbekistan by combining multi-temporal RapidEye data and ground measurements. In Remote sensing for agriculture, ecosystems, and hydrology XII, 66–75. SPIE. doi: 10.1117/12.864796.
  • Eisavi V, Homayouni S, Yazdi AM, Alimohammadi AJE. 2015. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environ Monit Assess. 187:1–14.
  • Fu P, Weng QJRE 2016. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens Environ. 175:205–214. doi: 10.1016/j.rse.2015.12.040.
  • Gao B-CJR. 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266. doi: 10.1016/S0034-4257(96)00067-3.
  • Georganos S, Grippa T, Vanhuysse S, Lennert M, Shimoni M, Kalogirou S, Wolff EJG. 2018. Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci Remote Sens. 55(2):221–242. doi: 10.1080/15481603.2017.1408892.
  • Ghosh A, Sharma R, Joshi PJAG. 2014. Random forest classification of urban landscape using Landsat archive and ancillary data: combining seasonal maps with decision level fusion. Appl Geogr. 48:31–41. doi: 10.1016/j.apgeog.2014.01.003.
  • Guo L, Chehata N, Mallet C, Boukir SJIJP. 2011. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J Photogramm Remote Sens. 66(1):56–66. doi: 10.1016/j.isprsjprs.2010.08.007.
  • Hall-Beyer MJIJRS. 2017. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int J Remote Sens. 38(5):1312–1338. doi: 10.1080/01431161.2016.1278314.
  • Houborg R, McCabe MFJRSE 2018. A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing planet, Landsat and MODIS data. Remote Sens Environ. 209:211–226. doi: 10.1016/j.rse.2018.02.067.
  • Huete ARJR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 25(3):295–309. doi: 10.1016/0034-4257(88)90106-X.
  • Hütt C, Koppe W, Miao Y, Bareth GJR 2016. Best accuracy land use/land cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sens. 8(8):684. doi: 10.3390/rs8080684.
  • Jozdani SE, Johnson BA, Chen DJRS. 2019. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sens. 11(14):1713. doi: 10.3390/rs11141713.
  • Jun C, Ban Y, Li SJN. 2014. Open access to Earth land-cover map. Nature. 514(7523):434–434. doi: 10.1038/514434c.
  • Kiala Z, Mutanga O, Odindi J, Peerbhay KJRS. 2019. Feature selection on sentinel-2 multispectral imagery for mapping a landscape infested by parthenium weed. Remote Sens. 11(16):1892. doi: 10.3390/rs11161892.
  • Knight JF, Lunetta RS, Ediriwickrema J, Khorram SJG. 2006. Regional scale land cover characterization using MODIS-NDVI 250 m multi-temporal imagery: a phenology-based approach. GISci Remote Sens. 43(1):1–23. doi: 10.2747/1548-1603.43.1.1.
  • Kowe P, Mutanga O, Odindi J, Dube TJI. 2020. A quantitative framework for analysing long term spatial clustering and vegetation fragmentation in an urban landscape using multi-temporal landsat data. Int J Appl Earth Obs Geoinf. 88:102057. doi: 10.1016/j.jag.2020.102057.
  • Liu S, Jiang Q, Ma Y, Xiao Y, Cui YL. 2017. Object-oriented wetland classification based on hybrid feature selection method combining with relief F, multi-objective genetic algorithm and random forest. Trans Chin Soc Agric Mach. 48:119–127.
  • Lv ZY, Zhang P, Benediktsson JA, Shi WZJIJ. 2014. Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution. IEEE J Sel Top Appl Earth Observ Remote Sens. 7(12):4644–4652. doi: 10.1109/JSTARS.2014.2328618.
  • Ma L, Fu T, Blaschke T, Li M, Tiede D, Zhou Z, Ma X, Chen DJIIJG. 2017. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. IJGI. 6(2):51. doi: 10.3390/ijgi6020051.
  • Patil MB, Desai CG, Umrikar BNJIJG. 2012. Image classification tool for land use/land cover analysis: a comparative study of maximum likelihood and minimum distance method. Int J Geol, Earth Environ Sci. 2:189–196.
  • Peng H, Long F, Ding CJIT. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 27(8):1226–1238. doi: 10.1109/TPAMI.2005.159.
  • Pflugmacher D, Rabe A, Peters M, Hostert PJR. 2019. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens Environ. 221:583–595. doi: 10.1016/j.rse.2018.12.001.
  • Rodriguez-Galiano V, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan CJRSE. 2012a. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ. 121:93–107. doi: 10.1016/j.rse.2011.12.003.
  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JPJI. 2012b. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens. 67:93–104. doi: 10.1016/j.isprsjprs.2011.11.002.
  • Saini R, Ghosh SKJJ. 2019. Analyzing the impact of red-edge band on land use land cover classification using multispectral RapidEye imagery and machine learning techniques. J Appl Rem Sens. 13(4):1. doi: 10.1117/1.JRS.13.044511.
  • Samat A, Li E, Wang W, Liu S, Lin C, Abuduwaili JJRS. 2020. Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles. Remote Sens. 12(12):1973. doi: 10.3390/rs12121973.
  • Scheffler D, Hollstein A, Diedrich H, Segl K, Hostert PJR. 2017. AROSICS: an automated and robust open-source image co-registration software for multi-sensor satellite data. Remote Sens. 9(7):676. doi: 10.3390/rs9070676.
  • Schulz D, Yin H, Tischbein B, Verleysdonk S, Adamou R, Kumar NJIJP. 2021. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS J Photogramm Remote Sens. 178:97–111. doi: 10.1016/j.isprsjprs.2021.06.005.
  • Senf C, Leitão PJ, Pflugmacher D, van der Linden S, Hostert PJRSE. 2015. Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens Environ. 156:527–536. doi: 10.1016/j.rse.2014.10.018.
  • Shao Z, Zhang Y, Zhou W. 2016. Long-term monitoring of the urban impervious surface mapping using time series Landsat imagery: a 23-year case study of the city of Wuhan in China. In 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 212–216. IEEE.
  • Sharma R, Ghosh A, Joshi PJJ. 2013. Decision tree approach for classification of remotely sensed satellite data using open source support. J Earth Syst Sci. 122(5):1237–1247. doi: 10.1007/s12040-013-0339-2.
  • Stromann O, Nascetti A, Yousif O, Ban YJRS. 2019. Dimensionality reduction and feature selection for object-based land cover classification based on Sentinel-1 and Sentinel-2 time series using Google Earth Engine. Remote Sens. 12(1):76. doi: 10.3390/rs12010076.
  • Vadrevu K, Heinimann A, Gutman G, Justice CJI. 2019. Remote sensing of land use/cover changes in South and Southeast Asian Countries. Int J Digital Earth. 12(10):1099–1102. doi: 10.1080/17538947.2019.1654274.
  • Wang F, Huang J, Wang XJJ. 2008. Effects of band position and bandwidth on NDVI measurements of rice at different growth stages. Int J Remote Sens. 12:626–632.
  • Xia T, He Z, Cai Z, Wang C, Wang W, Wang J, Hu Q, Song QJIJ. 2022. Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. Int J Appl Earth Obs Geoinf. 107:102702. doi: 10.1016/j.jag.2022.102702.
  • Yanan S, Xianyue L, Haibin SJT. 2021. Classification of land use in Hetao Irrigation District of Inner Mongolia using feature optimal decision trees. Trans Chin Soc Agric Eng. 37:242–251.
  • Yang S, Li Y, Feng G, Zhang LJI. 2014. A method aimed at automatic landslide extraction based on background values of satellite imagery. Int J Remote Sens. 35(6):2247–2266. doi: 10.1080/01431161.2014.890760.
  • Yang Y, Zhan Y, Tian Q, Gu X, Yu T, Wang LJT. 2015. Crop classification based on GF-1/WFV NDVI time series. Trans Chin Soc Agric Eng. 31:155–161.
  • Yang F, Piao P, Lai Y, Pei L. 2017. Margin based permutation variable importance: a stable importance measure for random forest. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 1–8. IEEE. doi: 10.1109/ISKE.2017.8258842.
  • Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S. 2022. ESA WorldCover 10 m 2021 v200.
  • Zarco-Tejada PJ, Rueda C, Ustin SJR. 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens Environ. 85(1):109–124. doi: 10.1016/S0034-4257(02)00197-9.
  • Zhai Y, Yao Y, Guan Q, Liang X, Li X, Pan Y, Yue H, Yuan Z, Zhou JJI. 2020. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int J Geograph Inform Sci. 34(7):1475–1499. doi: 10.1080/13658816.2020.1711915.
  • Zhang L, Gong Z, Wang Q, Jin D, Wang XJJRS. 2019. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Int J Remote Sens. 23:313–326. doi: 10.11834/jrs.20198083.
  • Zhang Y, Li R, Mu X, Ren HJT. 2021. Extraction of paddy rice planting areas based on multi-temporal GF-6 remote sensing images. Trans Chin Soc Agric Eng. 37:189–196.
  • Zhang Y, Liu L, Zhao PJJ. 2018. WZ5 water index and validation of its effectiveness in a coastal wetland water extraction. J Zhejiang A&F University. 35:735–742.
  • Zhang R, Tang X, You S, Duan K, Xiang H, Luo HJAS. 2020. A novel feature-level fusion framework using optical and SAR remote sensing images for land use/land cover (LULC) classification in cloudy mountainous area. Appl Sci. 10(8):2928. doi: 10.3390/app10082928.
  • Zhang Y, Xu BJI. 2015. Spatiotemporal analysis of land use/cover changes in Nanchang area, China. Int J Digital Earth. 8(4):312–333. doi: 10.1080/17538947.2014.894145.
  • Zhang Y, Zhang H, Lin HJR. 2014. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens Environ. 141:155–167. doi: 10.1016/j.rse.2013.10.028.
  • Zhao Y, Feng D, Yu L, Wang X, Chen Y, Bai Y, Hernández HJ, Galleguillos M, Estades C, Biging GS, et al. 2016. Detailed dynamic land cover mapping of Chile: accuracy improvement by integrating multi-temporal data. Remote Sens Environ. 183:170–185. doi: 10.1016/j.rse.2016.05.016.
  • Zheng Z, Qingyun HJS. 2021. Spatio-temporal evaluation of the urban agglomeration expansion in the middle reaches of the Yangtze River and its impact on ecological lands. Sci Total Environ. 790:148150. doi: 10.1016/j.scitotenv.2021.148150.