744
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A new four-stage approach based on normalized vegetation indices for detecting and mapping sugarcane hail damage using multispectral remotely sensed data

, , &
Article: 2245788 | Received 09 Mar 2023, Accepted 03 Aug 2023, Published online: 16 Aug 2023

References

  • Adams-Selin RD, Ziegler CL. 2016. Forecasting hail using a one-dimensional hail growth model within WRF. Month Weather Rev. 144(12):4919–4939. doi: 10.1175/MWR-D-16-0027.1.10.1175/MWR-D-16-0027.1.
  • Browning KA. 1977. The structure and mechanisms of hailstorms. In: Foote, GB., Knight, CA, editors. Hail: a review of hail science and hail suppression. Meteorological monographs. Vol. 16. Boston (MA): American Meteorological Society. doi: 10.1007/978-1-935704-30-0_1.
  • Changnon SA, Kunkel K. 2006. Severe storms in the Midwest. Illinois state water survey, Informational/Educational Material 2006-06, 74p. Champaign Illinois.
  • Childs SJ, Schumacher RS, Demuth JL. 2020. Agricultural perspectives on hailstorm severity, vulnerability, and risk messaging in eastern Colorado. Weather Clim Soc. 12(4):897–911. doi: 10.1175/WCAS-D-20-0015.1.
  • Chivasa W, Mutanga O, Biradar C. 2019. Phenology-based discrimination of maize (Zea mays L.) varieties using multitemporal hyperspectral data. J Appl Rem Sens. 13(01):1. doi: 10.1117/1.JRS.13.017504.
  • Cho MA, Sobhan I, Skidmore AK, de Leeuw J. 2008. Discriminating species using hyperspectral indices at leaf and canopy scales. Int Arch Photogram Rem Sens Spat Inform Sci. 37(Part B7):1–8.
  • Choudhary KK, Chakraborty A, Murthy C, Poddar M. 2022. Satellite-based assessment of hailstorm affected potato crop for insurance purpose. Natural Hazards. 114:787–810. doi: 10.1007/s11069-022-05412-w.
  • Gitelson AA, Gritz Y, Merzlyak MN. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol. 160(3):271–282. doi: 10.1078/0176-1617-00887.
  • Gobbo S, Ghiraldini A, Dramis A, Dal Ferro N, Morari F. 2021. Estimation of hail damage using crop models and remote sensing. Remote Sens. 13(14):2655. doi: 10.3390/rs13142655.
  • Ha T, Shen Y, Duddu H, Johnson E, Shirtliffe SJ. 2022. Quantifying hail damage in crops using sentinel-2 imagery. Remote Sens. 14(4):951. doi: 10.3390/rs14040951.
  • Hatfield JL, Gitelson AA, Schepers JS, Walthall CL. 2008. Application of spectral remote sensing for agronomic decisions. Agron J. 100(S3):1–29. doi: 10.2134/agronj2006.0370c.
  • Klemas VV. 2009. The role of remote sensing in predicting and determining coastal storm impacts. J Coast Res. 256(6):1264–1275. doi: 10.2112/08-1146.1.
  • Kuri F, Murwira A, Murwira KS, Masocha M. 2014. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. Int J Appl Earth Obs Geoinf. 33:39–46. doi: 10.1016/j.jag.2014.04.021.
  • Mafuratidze P, Muumbe TP, Gara TW. 2020. Dominant wetland vegetation species discrimination and quantification using in situ hyperspectral data. Transact R Soc South Afr. 75(3):229–238. doi: 10.1080/0035919X.2020.1798301.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens. 66(3):247–259. doi: 10.1016/j.isprsjprs.2010.11.001.
  • Mutowo G, Mutanga O, Masocha M. 2023. Optimising Sentinel-2 MSI spatial resolution for estimating foliar nitrogen concentration in miombo woodlands. J Spat Sci. 68(1):107–121. doi: 10.1080/14498596.2021.1930592.
  • Muumbe TP, Tagwireyi P, Mafuratidze P, Hussin Y, van Leeuwen L. 2021. Estimating above-ground biomass of individual trees with terrestrial laser scanner and 3D quantitative structure modelling. South For. 83(1):56–68. doi: 10.2989/20702620.2020.1818535.
  • Peters AJ, Griffin SC, Viña A, Ji L. 2000. Use of remotely sensed data for assessing crop hail damage. PE&RS Photogram Eng Remote Sens. 66(11):1349–1355.
  • Petoumenou DG, Biniari K, Xyrafis E, Mavronasios D, Daskalakis I, Palliotti A. 2019. Effects of natural hail on the growth, physiological characteristics, yield, and quality of Vitis vinifera L. cv. thompson seedless under mediterranean growing conditions. Agronomy. 9(4):197. doi: 10.3390/agronomy9040197.
  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S. 1994. A modified soil adjusted vegetation index. Remote Sens Environ. 48(2):119–126. doi: 10.1016/0034-4257(94)90134-1.
  • Rahman MS, Di L, Yu E, Lin L, Yu Z. 2021. Remote sensing based rapid assessment of flood crop damage using novel disaster vegetation damage index (DVDI). Int J Disaster Risk Sci. 12(1):90–110. doi: 10.1007/s13753-020-00305-7.
  • Raupach TH, Martius O, Allen JT, Kunz M, Lasher-Trapp S, Mohr S, Rasmussen KL, Trapp RJ, Zhang Q. 2021. The effects of climate change on hailstorms. Nat Rev Earth Environ. 2(3):213–226. doi: 10.1038/s43017-020-00133-9.
  • Rouse JW, Jr., Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the great plains with erts. NASA Spec Publ. 351:309. https://ui.adsabs.harvard.edu/abs/1974NASSP.351.309R.
  • Schillaci C, Inverardi F, Battaglia ML, Perego A, Thomason W, Acutis M. 2022. Assessment of hail damages in maize using remote sensing and comparison with an insurance assessment: A case study in Lombardy. Ital J Agronomy. 17(4) doi: 10.4081/ija.2022.2126.
  • Silleos N, Perakis K, Petsanis G. 2002. Assessment of crop damage using space remote sensing and GIS. Int J Remote Sens. 23(3):417–427. doi: 10.1080/01431160110040026.
  • Singh, S. K., Saxena, R., Porwal, A., Ray, N., & Ray, S. S. (2017). Assessment of hailstorm damage in wheat crop using remote sensing. Curr Sci. 10, 112, 2095–2100. doi: 10.18520/cs/v112/i10/2095-2100.
  • Sosa L, Justel A, Molina Í. 2021. Detection of crop hail damage with a machine learning algorithm using time series of remote sensing data. Agronomy. 11(10):2078. doi: 10.3390/agronomy11102078.
  • Susantoro TM, Wikantika K, Saepuloh A, Harsolumakso AH. 2018. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia. IOP Conf Ser earth Environ Sci. 149(1):012001. doi: 10.1088/1755-1315/149/1/012001.
  • Tang BH, Gensini VA, Homeyer CR. 2019. Trends in United States large hail environments and observations. Npj Clim Atmos Sci. 2(1):45. doi: 10.1038/s41612-019-0103-7.
  • Van Deventer AP, Ward AD, Gowda PM, Lyon JG. 1997. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm Eng Remote Sens. 63(1):87–93.
  • Wiberg K. 2001. Enantiospecific analysis and environmental behavior of chiral persistent organic pollutants (POPs).
  • Wiklund S. 2007. Spectroscopic data and multivariate analysis -tools to study genetic perturbations in poplar trees. In Processing (Issue November).
  • Wójtowicz M, Wójtowicz A, Piekarczyk J. 2016. Application of remote sensing methods in agriculture. Commun Biom Crop Sci. 11(1):31–50.
  • Yu G, Di L, Zhang B, Shao Y, Shrestha R, Kang L. 2013. Remote-sensing-based flood damage estimation using crop condition profiles. 2013 second international conference on agro-geoinformatics (agro-geoinformatics), 205–210. doi: 10.1109/Argo-Geoinformatics.2013.6621908.
  • Zhao JL, Zhang DY, Luo JH, Huang SL, Dong YY, Huang WJ. 2012. Detection and mapping of hail damage to corn using domestic remotely sensed data in China. Aust J Crop Sci. 6(1):101–108.
  • Zheng H, Cheng T, Li D, Zhou X, Yao X, Tian Y, Cao W, Zhu Y. 2018. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 10(6):824. doi: 10.3390/rs10060824.
  • Zontov YV, Rodionova OY, Kucheryavskiy SV, Pomerantsev AL. 2020. Chemometrics and Intelligent Laboratory Systems PLS-DA – A MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis. Chemom Intel Lab Syst. 203:104064. doi: 10.1016/j.chemolab.2020.104064.