777
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Graph neural network method for the intelligent selection of river system

ORCID Icon &
Article: 2252762 | Received 16 Jun 2023, Accepted 23 Aug 2023, Published online: 01 Sep 2023

References

  • Abdel-Hamid O, Mohamed A, Jiang H, Deng L, Penn G, Yu D. 2014. Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 22(10):1533–1545. doi: 10.1109/TASLP.2014.2339736.
  • Ai T, Liu Y, Huang Y. 2007. The Hierarchical watered partitioning and generalisation of river network. J Sur Map. 36(02):231–236. +243.
  • Ai T. 2021. Some thoughts on deep learning enabling cartography. Acta Geod Cartogr Sin. 50(09):1170–1182.
  • An J, Guo L, Liu W, Fu Z, Ren P, Liu X, Li T. 2021. IGAGCN: information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction. Neural Netw. 143:355–367. doi: 10.1016/j.neunet.2021.05.035.
  • Anderson-Tarver C, Buttenfield BP, Stanislawski LV, Koontz JM. 2011. Automated delineation of stream centerlines for the USGS National Hydrography Dataset. Adv Cartogr GISci. 1:409–423.
  • Buttenfield BP, Samaranayake VA. 2010 Sept 12–13. Generalization of hydrographic features and automated metric assessment through bootstrapping. In: 13th Workshop of the International Cartographic Association commission on Generalisation and Multiple Representation, Zurich, Switzerland.
  • Buttenfield BP, Stanislawski LV, Anderson-Tarver C, Gleason MJ. 2013. Automatic enrichment of stream networks with primary paths for use in the United States national atlas. In: Proceedings, International Cartographic Conference (ICC2014), Dresden Germany.
  • Chen C, He W, Zhou H, Xue Y, Zhu M. 2020. A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Sci Rep. 10(1):3904. doi: 10.1038/s41598-020-60698-9.
  • Du J, Wu F, Zhu L, Liu C, Wang A. 2022. An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification. Acta Geod Cartogr Sin. 51(03):373–387.
  • Duan P, Qian H, He H, Liu C, Xie L. 2019. A lake selection method based on dynamic multi-scale clustering. Geom Inf Sci Wuhan Univ. 44(10):1567–1574.
  • Duan P, Qian H, He H, Xie L, Luo D. 2019. Naive Bayes-based automatic classification method of tree-like river network supported by case. Acta Geod Cartogr Sin. 48(08):975–984.
  • Gong J, Ji S. 2018. Photogrammetry and deep learning. J Geod GI Sci. 1(1):1–15.
  • Guo X, Qian H, Wang X, Liu J, Ren Y, Zhao Y, Chen G. 2022. Ontology knowledge reasoning method for multi-source intelligent road selection. Acta Geod Cartogr Sin. 51(02):279–289.
  • Hamilton W, Ying Z, Leskovec J. 2017. Inductive representation learning on large graphs. Adv Neural Inf Proc Sys. 30:1025–1035.
  • Han M, Su Z, Na X. 2023. Predict water quality using an improved deep learning method based on spatiotemporal feature correlated: a case study of the Tanghe Reservoir in China. Stoch Environ Res Risk Assess. 37(7):2563–2575. doi: 10.1007/s00477-023-02405-4.
  • Jiang L, Qi Q, Zhang A. 2015. River classification and river network structuration in river auto-selection. Geom Inf Sci Wuhan Univ. 40(06):841–846.
  • Krizhevsky A, Sutskever I, Hinton G. 2017. Imagenet classification with deep convolutional neural networks. Commun ACM. 60(6):84–90. doi: 10.1145/3065386.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Natur. 521(7553):436–444. doi: 10.1038/nature14539.
  • Li C, Wu W, Yin Y. 2018. Hierarchical elimination selection method of dendritic river network generalization. PLoS One. 13(12):e0208101. doi: 10.1371/journal.pone.0208101.
  • Li C, Yin Y, Wu W, Wu P. 2018. Method of tree-like river networks hierarchical relation establishing and generalization considering stroke properties. J Sur Map. 47(4):537–546.
  • Liu C, Zhai R, Qian H, Gong X, Wang A, Wu F. 2023. Identification of drainage patterns using a graph convolutional neural network. Trans GIS. 27(3):752–776. doi: 10.1111/tgis.13041.
  • Long S, Wu T, Sun G, Feng D, Tong L, Xing M. 2020. Object detection research of SAR image using improved faster region-based convolutional neural network. J Geod GISci. 3(3):18–28.
  • Long Y, Cao Y, Shen J, Li W, Zhou D. 2011. Cooperative generalization method of contour cluster and river network based on constrained D-TIN. Acta Geod Cartogr Sin. 40(03):379–385.
  • Lu B, Gan X, Jin H, Fu L, Wang X, Zhang H. 2022. Make more connections: urban traffic flow forecasting with spatiotemporal adaptive gated graph convolution network. ACM Trans Intell Syst Technol. 13(2):1–25. doi: 10.1145/3488902.
  • Ni Q, Cao X, Tan C, Wen P, Kang X. 2023. An improved graph convolutional network with feature and temporal attention for multivariate water quality prediction. Environ Sci Pollut Res Int. 30(5):11516–11529. doi: 10.1007/s11356-022-22719-0.
  • Savino S. 2014. Generalization of braided streams. In: 17th ICA Workshop on Generalisation and Multiple Representation, Vienna, Austria.
  • Sen A, Gokgoz T. 2015. An experimental approach for selection/elimination in stream network generalization using support vector machines. Geo Int. 30(3):311–329. doi: 10.1080/10106049.2014.937466.
  • Shao L, He Z, Ai Z, Song X. 2004. Automatic generalization of a river network based on BP neural network. Geom Inf Sci Wuhan Univ. 29(06):555–557.
  • Shi W, Sui H. 2022. An effective superpixel-based graph convolutional network for small waterbody extraction from remotely sensed imagery. Int J Appl Earth Obs Geoinf. 109:102777. doi: 10.1016/j.jag.2022.102777.
  • Stoter J, Post M, van Altena V, Nijhuis R, Bruns B. 2014. Fully automated generalization of a 1: 50k map from 1: 10k data. Cartogr Geog Inf Sci. 41(1):1–13. doi: 10.1080/15230406.2013.824637.
  • Sun A, Jiang P, Yang Z, Xie Y, Chen X. 2022. A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion. Hydrol Earth Syst Sci. 26(19):5163–5184. doi: 10.5194/hess-26-5163-2022.
  • Wang D, Qian H, Zhao Y. 2022. Review and prospect: management, multi-scale transformation and representation of geospatial data. GIScience. 24(12):2265–2281.
  • Wang G, Wu M, Wei X, Song H. 2020. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networks. Remote Sens. 12(5):795. doi: 10.3390/rs12050795.
  • Wang S, Zhang M, Miao H, Peng Z, Yu PS. 2022. Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction. ACM Trans Intell Syst Technol. 13(3):1–22. doi: 10.1145/3469087.
  • Wang W, Yan H, Lu X, He Y, Liu T, Li W, Li P, Xu F. 2023. Drainage pattern recognition method considering local basin shape based on graph neural network. Int J Digital Earth. 16(1):593–619. doi: 10.1080/17538947.2023.2172224.
  • Wang W, Yan H, Lu X, Liu T, Wang Z. 2021. A review of automatic generalization research on map river networks. Geog GISci. 37(05):1–8.
  • Wu B, Liang X, Zhang S, Xu R. 2022. Frontier advances and applications of graph neural networks. Chi J Comp. 45(01):35–68.
  • Wu F, Du J, Qian H, Zhai R. 2022. Developments and reflections on intelligent map generalization. Geom Inf Sci Wuhan Univ. 47(10):1675–1687.
  • Wu F, Tan X, Wang H, Zhai R. 2007. Study on automated canal selection. J Image Graphics. 12(06):1103–1109.
  • Wu H, Ng M. 2022. Hypergraph convolution on nodes-hyperedges network for semi-supervised node classification. ACM Trans Knowl Discov Data. 16(4):1–19. doi: 10.1145/3494567.
  • Xia T, Lin J, Li Y, Feng J, Hui P, Sun F, Guo D, Jin D. 2021. 3DGCN: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction. ACM Trans Knowl Discov Data. 15(6):1–21. doi: 10.1145/3451394.
  • Xiao T, Ai T, Yu H, Yang M, Liu P. 2023. A point selection method in map generalization using graph convolutional network model. Cartogr Geogr Inf Sci. 50(3):1–21. doi: 10.1080/15230406.2023.2187886.
  • Yang M, Jiang C, Yan X, Ai T, Cao M, Chen W. 2022. Detecting interchanges in road networks using a graph convolutional network approach. Int J Geogr Inf Sci. 36(6):1119–1139. doi: 10.1080/13658816.2021.2024195.
  • Yu H, Ai T, Yang M, Huang L, Gao A. 2023. Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network. Expert Syst Appl. 211:118639. doi: 10.1016/j.eswa.2022.118639.
  • Yu H, Ai T, Yang M, Huang L, Yuan J. 2022. A recognition method for drainage patterns using a graph convolutional network. Int J Appl Earth Obs Geoinf. 107:102696. doi: 10.1016/j.jag.2022.102696.
  • Yu Y, He K, Wu F, Xu J. 2022. A graph convolutional neural network approach for shape classification of faceted residential land. Acta Geod Cartogr Sin. 51(11):2390–2402.
  • Zheng J, Gao Z, Ma J, Shen J, Zhang K. 2021. Deep graph convolutional networks for accurate automatic road network selection. Int J Geo-Inf. 10(11):768. doi: 10.3390/ijgi10110768.
  • Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. 2020. Graph neural networks: a review of methods and applications. AI Open. 1:57–81. doi: 10.1016/j.aiopen.2021.01.001.