674
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic monitoring of surface water areas of nine plateau lakes in Yunnan Province using long time-series Landsat imagery based on the Google Earth Engine platform

&
Article: 2253196 | Received 03 Jan 2023, Accepted 24 Aug 2023, Published online: 05 Sep 2023

References

  • Aires F, Venot J-P, Massuel S, Gratiot N, Pham-Duc B, Prigent C. 2020. Surface water evolution (2001–2017) at the Cambodia/Vietnam border in the upper mekong delta using satellite MODIS observations. Remote Sens. 12(5):800. doi: 10.3390/rs12050800.
  • Arvor D, Daher FRG, Briand D, Dufour S, Rollet A-J, Simões M, Ferraz RPD. 2018. Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series. ISPRS J Photogramm Remote Sens. 145:225–237. doi: 10.1016/j.isprsjprs.2018.03.015.
  • Chen B, Xiao X, Li X, Pan L, Doughty R, Ma J, Dong J, Qin Y, Zhao B, Wu Z, et al. 2017. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J Photogramm Remote Sens. 131:104–120., doi: 10.1016/j.isprsjprs.2017.07.011.
  • Duan Q, Tan M, Guo Y, Wang X, Xin L. 2019. Understanding the spatial distribution of urban forests in China using Sentinel-2 images with Google Earth Engine. Forests. 10(9):729. doi: 10.3390/f10090729.
  • Feng D. 2012. A new method for fast information extraction of water bodies using remotely sensed data. Remote Sens Technol Appl. 24:167–171.
  • Feyisa GL, Meilby H, Fensholt R, Proud SR. 2014. Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ. 140:23–35. doi: 10.1016/j.rse.2013.08.029.
  • Fisher A, Flood N, Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens Environ. 175:167–182. doi: 10.1016/j.rse.2015.12.055.
  • Guo Y, Xia H, Zhao X, Qiao L, Du Q, Qin Y. 2022. Early-season mapping of winter wheat and garlic in Huaihe basin using Sentinel-1/2 and Landsat-7/8 imagery. IEEE J Sel Top Appl Earth Observ Remote Sens. 15:1–10. doi: 10.1109/JSTARS.2022.3215589.
  • Hamunyela E, Hipondoka M, Persendt F, Sevelia Nghiyalwa H, Thomas C, Matengu K. 2022. Spatio-temporal characterization of surface water dynamics with Landsat in endorheic Cuvelai-Etosha Basin (1990–2021). ISPRS J Photogramm Remote Sens. 191:68–84. doi: 10.1016/j.isprsjprs.2022.07.007.
  • Hao B, Ma M, Li S, Li Q, Hao D, Huang J, Ge Z, Yang H, Han X. 2019. Land use change and climate variation in the three gorges reservoir catchment from 2000 to 2015 based on the Google Earth Engine. Sensors. 19(9):2118. doi: 10.3390/s19092118.
  • Harris A. 1994. Time series remote sensing of a climatically sensitive lake. Remote Sens Environ. 50(2):83–94. doi: 10.1016/0034-4257(94)90036-1.
  • Ji L, Zhang L, Wylie BK. 2009. Analysis of dynamic thresholds for the normalized difference water index. Photogramm Eng Remote Sens. 75(11):1307–1317. doi: 10.14358/PERS.75.11.1307.
  • Kandekar VU, Pande CB, Rajesh J, Atre AA, Gorantiwar SD, Kadam SA, Gavit B. 2021. Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam. Sustain Water Resour Manag. 7(3):44. doi: 10.1007/s40899-021-00527-7.
  • Li R, Xia H, Zhao X, Guo Y. 2023. Mapping evergreen forests using new phenology index, time series Sentinel-1/2 and Google Earth Engine. Ecol Indic. 149:110157. doi: 10.1016/j.ecolind.2023.110157.
  • Liu D, Chen N, Zhang X, Wang C, Du W. 2020a. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: a case study in the middle Yangtze River basin. ISPRS J Photogramm Remote Sens. 159:337–351. doi: 10.1016/j.isprsjprs.2019.11.021.
  • Liu X, Shi Z, Huang G, Bo Y, Chen G. 2020b. Time series remote sensing data-based identification of the dominant factor for Inland Lake Surface Area Change: anthropogenic activities or natural events? Remote Sens. 12(4):612. doi: 10.3390/rs12040612.
  • Ma S, Zhou Y, Gowda PH, Dong J, Zhang G, Kakani VG, Wagle P, Chen L, Flynn KC, Jiang W. 2019. Application of the water-related spectral reflectance indices: a review. Ecol Indic. 98:68–79. doi: 10.1016/j.ecolind.2018.10.049.
  • Mcfeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432. doi: 10.1080/01431169608948714.
  • Miao Z, Fu K, Sun H, Sun X, Yan M. 2018. Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci Remote Sens Lett. 15(4):602–606. doi: 10.1109/LGRS.2018.2794545.
  • Mishra AP, Khali H, Singh S, Pande CB, Singh R, Chaurasia SK. 2021. An assessment of in-situ water quality parameters and its variation with Landsat 8 level 1 surface reflectance datasets. Int J Environ Anal Chem. 101:1–23. doi: 10.1080/03067319.2021.1954175.
  • Mueller N, Lewis A, Roberts D, Ring S, Melrose R, Sixsmith J, Lymburner L, McIntyre A, Tan P, Curnow S, et al. 2016. Water observations from space: mapping surface water from 25years of Landsat imagery across Australia. Remote Sens Environ. 174:341–352. doi: 10.1016/j.rse.2015.11.003.
  • Oliphant AJ, Thenkabail PS, Teluguntla P, Xiong J, Gumma MK, Congalton RG, Yadav K. 2019. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int J Appl Earth Obs Geoinf. 81:110–124. doi: 10.1016/j.jag.2018.11.014.
  • Olthof I, Rainville T. 2022. Dynamic surface water maps of Canada from 1984 to 2019 Landsat satellite imagery. Remote Sens Environ. 279:113121. doi: 10.1016/j.rse.2022.113121.
  • Orimoloye IR, Olusola AO, Belle JA, Pande CB, Ololade OO. 2022. Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms. Nat Hazards. 112(2):1085–1106. doi: 10.1007/s11069-022-05219-9.
  • Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 9(1):62–66. doi: 10.1109/TSMC.1979.4310076.
  • Pan L, Xia H, Zhao X, Guo Y, Qin Y. 2021. Mapping winter crops using a phenology algorithm, time-series Sentinel-2 and Landsat-7/8 images, and Google Earth Engine. Remote Sens. 13(13):2510. doi: 10.3390/rs13132510.
  • Pande CB. 2020. Sustainable watershed development planning. In: Pande CB, ed. Sustainable watershed development: a case study of semi-arid region in maharashtra state of India. Cham: Springer International Publishing; p. 57–69.
  • Pande CB. 2022. Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto Int. 37(26):13860–13880. doi: 10.1080/10106049.2022.2086622.
  • Pande CB, Kadam SA, Jayaraman R, Gorantiwar S, Shinde M. 2022. Prediction of soil chemical properties using multispectral satellite images and wavelet transforms methods. J Saudi Soc Agric Sci. 21(1):21–28. doi: 10.1016/j.jssas.2021.06.016.
  • Pekel J, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature. 540(7633):418–422. doi: 10.1038/nature20584.
  • Phalke AR, Özdoğan M, Thenkabail PS, Erickson T, Gorelick N, Yadav K, Congalton RG. 2020. Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine. ISPRS J Photogramm Remote Sens. 167:104–122. doi: 10.1016/j.isprsjprs.2020.06.022.
  • Pickens AH, Hansen MC, Hancher M, Stehman SV, Tyukavina A, Potapov P, Marroquin B, Sherani Z. 2020. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens Environ. 243:111792. doi: 10.1016/j.rse.2020.111792.
  • Qian X, Kun Y, Liang H. 2018. Remote sensing monitoring and temporal-spatial analysis of surface water body area changes of lakes on the Yunnan-Guizhou Plateau over the past 30 years. J Lake Sci. 30(4):1083–1096. doi: 10.18307/2018.0421.
  • Ruan K, Zha Y, Zhou Z, Yang P. 2016. A modified GAC model for extracting waterline from remotely sensed imagery. J Remote Sens. 37(17):3961–3973. doi: 10.1080/01431161.2016.1207263.
  • Shinde S, Pande CB, Barai VN, Gorantiwar SD, Atre AA. 2023. Flood impact and damage assessment based on the Sentitnel-1 SAR data using Google Earth Engine. In: Pande CB, Moharir KN, Singh SK, Pham QB, Elbeltagi A, eds. Climate change impacts on natural resources, ecosystems and agricultural systems. Cham: Springer International Publishing; p. 483–502.
  • Tulbure MG, Broich M, Stehman SV, Kommareddy A. 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens Environ. 178:142–157. doi: 10.1016/j.rse.2016.02.034.
  • Wang C, Jia M, Chen N, Wang W. 2018. Long-term surface water dynamics analysis based on landsat imagery and the Google Earth Engine platform: a case study in the middle Yangtze River Basin. Remote Sens. 10(10):1635. doi: 10.3390/rs10101635.
  • Wang Y, Li Z, Zeng C, Xia G, Shen H. 2020. An urban water extraction method combining deep learning and Google Earth Engine. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:769–782. doi: 10.1109/JSTARS.2020.2971783.
  • Wang Y, Ma J, Xiao X, Wang X, Dai S, Zhao B. 2019. Long-term dynamic of poyang lake surface water: a mapping work based on the Google Earth Engine cloud platform. Remote Sens. 11(3):313. doi: 10.3390/rs11030313.
  • White ME. 1978. Reservoir surface area from landsat imagery. Photogramm Eng Remote Sens. 44:1421–1426.
  • Whitmore TJ, Brenner M, Jiang Z, Curtis JH, Moore A, Engstrom DR, Wu Y. 1997. Water quality and sediment geochemistry in lakes of Yunnan Province, Southern China. Environ Geol. 32(1):45–55. doi: 10.1007/s002540050192.
  • Worden J, de Beurs KM. 2020. Surface water detection in the Caucasus. Int J Appl Earth Obs Geoinf. 91:102159. doi: 10.1016/j.jag.2020.102159.
  • Work EA, Gilmer DS. 1976. Utilization of satellite data for inventorying prairie ponds and lakes. Photogramm Eng Remote Sens. 42:685–694.
  • Wu P, Shen H, Cai N, Zeng C, Wu Y, Wang B, Wang Y. 2016. Spatiotemporal analysis of water area annual variations using a Landsat time series: a case study of nine plateau lakes in Yunnan province, China. Int J Remote Sens. 37(24):5826–5842. doi: 10.1080/01431161.2016.1251630.
  • Xia H, Bian X, Pan L, Li R. 2023. Mapping tea plantation area using phenology algorithm, time-series Sentinel-2 and Landsat images. Int J Remote Sens. 44(9):2826–2846. doi: 10.1080/01431161.2023.2208713.
  • Xia H, Zhao J, Qin Y, Yang J, Cui Y, Song H, Ma L, Jin N, Meng Q. 2019. Changes in water surface area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sens. 11(15):1824. doi: 10.3390/rs11151824.
  • Xie H, Luo X, Xu X, Pan H, Tong X. 2016. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. J Remote Sens. 37(8):1826–1844. doi: 10.1080/01431161.2016.1168948.
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033. doi: 10.1080/01431160600589179.
  • Yang Y, Liu Y, Zhou M, Zhang S, Zhan W, Sun C, Duan Y. 2015. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens Environ. 171:14–32. doi: 10.1016/j.rse.2015.10.005.
  • Yang J, Zhang W, Feng W, Shen Y. 2005. Freshwater testate amoebae of nine Yunnan Plateau Lakes, China. J Freshwater Ecol. 20(4):743–750. doi: 10.1080/02705060.2005.9664798.
  • Zhang G, Zheng G, Gao Y, Xiang Y, Lei Y, Li J. 2017. Automated water classification in the tibetan plateau using Chinese GF-1 WFV data. Photogramm Eng Remote Sens. 83(7):509–519. doi: 10.14358/PERS.83.7.509.
  • Zhou Y, Dong J, Xiao X, Liu R, Zou Z, Zhao G, Ge Q. 2019. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci Total Environ. 689:366–380. doi: 10.1016/j.scitotenv.2019.06.341.
  • Zurqani HA, Post CJ, Mikhailova EA, Schlautman MA, Sharp JL. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int J Appl Earth Obs Geoinf. 69:175–185. doi: 10.1016/j.jag.2017.12.006.