1,313
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spatial prediction of groundwater potential by various novel boosting-based ensemble learning models in mountainous areas

, , , , , , , , & show all
Article: 2274870 | Received 26 Apr 2023, Accepted 19 Oct 2023, Published online: 02 Nov 2023

References

  • Abedi R, Costache R, Shafizadeh-Moghadam H, Pham QB. 2022. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 37(19):5479–5496. doi: 10.1080/10106049.2021.1920636.
  • Abijith D, Saravanan S, Singh L, Jennifer JJ, Saranya T, Parthasarathy K. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones-a case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch. 3:1–14. doi: 10.1016/j.hydres.2020.02.002.
  • Ahmad I, Dar MA, Andualem TG, Teka AH. 2020a. Groundwater development using geographic information system. Appl Geomat. 12(1):73–82. doi: 10.1007/s12518-019-00283-6.
  • Ahmad I, Dar MA, Teka AH, Teshome M, Andualem TG, Teshome A, Shafi T. 2020b. GIS and fuzzy logic techniques-based demarcation of groundwater potential zones: a case study from Jemma River basin, Ethiopia. J Afr Earth Sci. 169:103860. doi: 10.1016/j.jafrearsci.2020.103860.
  • Ahmed K, Shahid S, Bin Harun S, Ismail T, Nawaz N, Shamsudin S. 2015. Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sci Inform. 8(3):539–549. doi: 10.1007/s12145-014-0173-3.
  • Al-Abadi AM, Al-Temmeme AA, Al-Ghanimy MA. 2016. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustain Water Resour Manag. 2(3):265–283. doi: 10.1007/s40899-016-0056-5.
  • Al-Abadi AM, Fryar AE, Rasheed AA, Pradhan B. 2021. Assessment of groundwater potential in terms of the availability and quality of the resource: a case study from Iraq. Environ Earth Sci. 80(12):1–22.
  • Al-Abadi AM, Shahid S. 2015. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environ Monit Assess. 187(9):576. doi: 10.1007/s10661-015-4801-2.
  • Al-Fugara A, Pourghasemi HR, Al-Shabeeb AR, Habib M, Al-Adamat R, Ai-Amoush H, Collins AL. 2020. A comparison of machine learning models for the mapping of groundwater spring potential. Environ Earth Sci. 79(10):19.
  • Amade N, Painho M, Oliveira T. 2018. Geographic information technology usage in developing countries - a case study in Mozambique. Geo-Spat Inf Sci. 21(4):331–345. doi: 10.1080/10095020.2018.1523995.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Can R, Kocaman S, Gokceoglu C. 2021. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Appl Sci. 11(11):4993. doi: 10.3390/app11114993.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system; p. 785–794.
  • Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, et al. 2018. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ. 634:853–867. doi: 10.1016/j.scitotenv.2018.04.055.
  • Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D. 2019. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol. 572:435–448. doi: 10.1016/j.jhydrol.2019.03.013.
  • Chen W, Zhao X, Tsangaratos P, Shahabi H, Ilia I, Xue W, Wang X, Ahmad BB. 2020. Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J Hydrol. 583:124602. doi: 10.1016/j.jhydrol.2020.124602.
  • Chen WW, Zhang S. 2021. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena. 203:105344. doi: 10.1016/j.catena.2021.105344.
  • Chen Y, Chen W, Chandra Pal S, Saha A, Chowdhuri I, Adeli B, Janizadeh S, Dineva AA, Wang X, Mosavi A. 2022. Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto Int. 37(19):5564–5584. doi: 10.1080/10106049.2021.1920635.
  • Chowdhury A, Jha M, Chowdary V, Mal B. 2009. Integrated remote sensing and GIS‐based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens. 30(1):231–250. doi: 10.1080/01431160802270131.
  • Dar T, Rai N, Bhat A. 2021. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol Ecol Landsc. 5(4):292–307. doi: 10.1080/24749508.2020.1726562.
  • Das R, Saha S. 2022. Spatial mapping of groundwater potentiality applying ensemble of computational intelligence and machine learning approaches. Groundw Sustain Dev. 18:100778. doi: 10.1016/j.gsd.2022.100778.
  • Das S, Bora PK, Das R. 2022. Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Model Earth Syst Environ. 8(1):1171–1177. doi: 10.1007/s40808-021-01153-0.
  • Davoudi Moghaddam D, Rahmati O, Haghizadeh A, Kalantari Z. 2020. A modeling comparison of groundwater potential mapping in a mountain bedrock aquifer: QUEST, GARP, and RF models. Water. 12(3):679. doi: 10.3390/w12030679.
  • Falah F, Ghorbani Nejad S, Rahmati O, Daneshfar M, Zeinivand H. 2017. Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto Int. 32(10):1069–1089. doi: 10.1080/10106049.2016.1188166.
  • Fatema K, Joy MAR, Amin FR, Sarkar SK. 2023. Groundwater potential mapping in Jashore, Bangladesh. Heliyon. 9(3):e13966. doi: 10.1016/j.heliyon.2023.e13966.
  • Freund Y, Schapire RE. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 55(1):119–139. doi: 10.1006/jcss.1997.1504.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat. 29:1189–1232.
  • Fu B, Burgher I. 2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J Arid Environ. 113:59–68. doi: 10.1016/j.jaridenv.2014.09.010.
  • Gambella C, Ghaddar B, Naoum-Sawaya J. 2021. Optimization problems for machine learning: a survey. Eur J Oper Res. 290(3):807–828. doi: 10.1016/j.ejor.2020.08.045.
  • Gaye CB, Tindimugaya C. 2019. Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol J. 27(3):1099–1110. doi: 10.1007/s10040-018-1892-1.
  • Golkarian A, Naghibi SA, Kalantar B, Pradhan B. 2018. Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess. 190(3):149. doi: 10.1007/s10661-018-6507-8.
  • Golkarian A, Rahmati O. 2018. Use of a maximum entropy model to identify the key factors that influence groundwater availability on the Gonabad Plain, Iran. Environ Earth Sci. 77:1–20.
  • Gomez-Escalonilla V, Martinez-Santos P, Martin-Loeches M. 2022. Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali. Hydrol Earth Syst Sci. 26(2):221–243. doi: 10.5194/hess-26-221-2022.
  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A. 2011. Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol. 405(3–4):532–560. doi: 10.1016/j.jhydrol.2011.05.002.
  • Guo X, Gui X, Xiong H, Hu X, Li Y, Cui H, Qiu Y, Ma C. 2023a. Critical role of climate factors for groundwater potential mapping in arid regions: insights from random forest, XGBoost, and LightGBM algorithms. J Hydrol. 621:129599. doi: 10.1016/j.jhydrol.2023.129599.
  • Guo X, Xiong H, Li H, Gui X, Hu X, Li Y, Cui H, Qiu Y, Zhang F, Ma C. 2023b. Designing dynamic groundwater management strategies through a composite groundwater vulnerability model: integrating human-related parameters into the DRASTIC model using LightGBM regression and SHAP analysis. Environ Res. 236(Pt 2):116871. doi: 10.1016/j.envres.2023.116871.
  • Gupta M, Srivastava PK. 2010. Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int. 35(2):233–245. doi: 10.1080/02508061003664419.
  • Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A. 2018. Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterr J Environ Integr. 3(1):1–15. doi: 10.1007/s41207-018-0067-8.
  • Hasegawa T, Fujimori S, Ito A, Takahashi K, Masui T. 2017. Global land-use allocation model linked to an integrated assessment model. Sci Total Environ. 580:787–796. doi: 10.1016/j.scitotenv.2016.12.025.
  • Huang G, Wu L, Ma X, Zhang W, Fan J, Yu X, Zeng W, Zhou H. 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J Hydrol. 574:1029–1041. doi: 10.1016/j.jhydrol.2019.04.085.
  • Hussein A-A, Govindu V, Nigusse AGM. 2017. Evaluation of groundwater potential using geospatial techniques. Appl Water Sci. 7(5):2447–2461. doi: 10.1007/s13201-016-0433-0.
  • Jafari H, Sudegi A, Bagheri R. 2019. Contribution of rainfall and agricultural returns to groundwater recharge in arid areas. J Hydrol. 575:1230–1238. doi: 10.1016/j.jhydrol.2019.06.029.
  • Jesiya N, Gopinath G. 2020. A fuzzy based MCDM–GIS framework to evaluate groundwater potential index for sustainable groundwater management-a case study in an urban-periurban ensemble, southern India. Groundw Sustain Dev. 11:100466. doi: 10.1016/j.gsd.2020.100466.
  • Jha MK, Kamii Y, Chikamori K. 2009. Cost-effective approaches for sustainable groundwater management in alluvial aquifer systems. Water Resour Manage. 23(2):219–233. doi: 10.1007/s11269-008-9272-6.
  • Jia X, O'Connor D, Hou D, Jin Y, Li G, Zheng C, Ok YS, Tsang DC, Luo J. 2019. Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Sci Total Environ. 672:551–562. doi: 10.1016/j.scitotenv.2019.03.457.
  • Ju Y, Sun G, Chen Q, Zhang M, Zhu H, Rehman MU. 2019. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. IEEE Access. 7:28309–28318. doi: 10.1109/ACCESS.2019.2901920.
  • Kamali Maskooni E, Naghibi SA, Hashemi H, Berndtsson R. 2020. Application of advanced machine learning algorithms to assess groundwater potential using remote sensing-derived data. Remote Sens. 12(17):2742. doi: 10.3390/rs12172742.
  • Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. 2017. Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems 30. p. 3146–3154.
  • Kim J-C, Jung H-S, Lee S. 2019. Spatial mapping of the groundwater potential of the geum river basin using ensemble models based on remote sensing images. Remote Sens. 11(19):2285. doi: 10.3390/rs11192285.
  • Kordestani MD, Naghibi SA, Hashemi H, Ahmadi K, Kalantar B, Pradhan B. 2019. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol J. 27(1):211–224. doi: 10.1007/s10040-018-1848-5.
  • Kumar R, Dwivedi SB, Gaur S. 2021. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region. Comput Geosci. 155:104855. doi: 10.1016/j.cageo.2021.104855.
  • Kustu MD, Fan Y, Robock A. 2010. Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: a synthesis of observed streamflow changes. J Hydrol. 390(3–4):222–244. doi: 10.1016/j.jhydrol.2010.06.045.
  • Lee S, Hong S-M, Jung H-S. 2018. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto Int. 33(8):847–861. doi: 10.1080/10106049.2017.1303091.
  • Lee S, Hyun Y, Lee M-J. 2019. Groundwater potential mapping using data mining models of big data analysis in Goyang-si, South Korea. Sustainability. 11(6):1678. doi: 10.3390/su11061678.
  • Li J, Li F, Li H, Guo C, Dong W. 2019. Analysis of rainfall infiltration and its influence on groundwater in rain gardens. Environ Sci Pollut Res Int. 26(22):22641–22655. doi: 10.1007/s11356-019-05622-z.
  • Li L, Qiao J, Yu G, Wang L, Li H-Y, Liao C, Zhu Z. 2022. Interpretable tree-based ensemble model for predicting beach water quality. Water Res. 211:118078. doi: 10.1016/j.watres.2022.118078.
  • Li M-G, Chen J-J, Xu Y-S, Tong D-G, Cao W-W, Shi Y-J. 2021. Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng Geol. 282:105995. doi: 10.1016/j.enggeo.2021.105995.
  • Liang G, Liu J. 2022. Integrated geographical environment factors explaining forest landscape changes in Luoning County in the middle reaches of the Yiluo River watershed, China. Ecol Indic. 139:108928. doi: 10.1016/j.ecolind.2022.108928.
  • Liu M, Jiang Y, Xu X, Huang Q, Huo Z, Huang G. 2018. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agric Water Manage. 203:37–52. doi: 10.1016/j.agwat.2018.02.028.
  • Machiwal D, Rangi N, Sharma A. 2015. Integrated knowledge-and data-driven approaches for groundwater potential zoning using GIS and multi-criteria decision making techniques on hard-rock terrain of Ahar catchment, Rajasthan, India. Environ Earth Sci. 73(4):1871–1892. doi: 10.1007/s12665-014-3544-7.
  • Magesh NS, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 3(2):189–196. doi: 10.1016/j.gsf.2011.10.007.
  • Mallick J, Khan RA, Ahmed M, Alqadhi SD, Alsubih M, Falqi I, Hasan MA. 2019. Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water. 11(12):2656. doi: 10.3390/w11122656.
  • Mallick J, Singh CK, Al‐Wadi H, Ahmed M, Rahman A, Shashtri S, Mukherjee S. 2015. Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol Process. 29(3):395–418. doi: 10.1002/hyp.10153.
  • Mallick J, Talukdar S, Ahmed M. 2022. Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed, Saudi Arabia. Appl Water Sci. 12(4):1–19. doi: 10.1007/s13201-022-01599-2.
  • Masroor M, Rehman S, Sajjad H, Rahaman MH, Sahana M, Ahmed R, Singh R. 2021. Assessing the impact of drought conditions on groundwater potential in Godavari Middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm. Groundw Sustain Dev. 13:100554. doi: 10.1016/j.gsd.2021.100554.
  • Melese T, Belay T. 2022. Groundwater potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Glob Chall. 6(1):2100068. doi: 10.1002/gch2.202100068.
  • Moghaddam DD, Rahmati O, Panahi M, Tiefenbacher J, Darabi H, Haghizadeh A, Haghighi AT, Nalivan OA, Bui DT. 2020. The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena. 187:104421. doi: 10.1016/j.catena.2019.104421.
  • Moghaddam DD, Rezaei M, Pourghasemi H, Pourtaghie Z, Pradhan B. 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab J Geosci. 8(2):913–929. doi: 10.1007/s12517-013-1161-5.
  • Monir MM, Sarker SC, Sarkar SK, Ahmed M, Mallick J, Islam ARMT. 2023. Groundwater level fluctuations and associated influencing factors in Rangpur District, Bangladesh, using modified Mann-Kendall and GIS-based AHP technique. Theor Appl Climatol. 153(3–4):1323–1339. doi: 10.1007/s00704-023-04541-x.
  • Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva AA, Sardooi ER. 2021. Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour Manage. 35(1):23–37. doi: 10.1007/s11269-020-02704-3.
  • Mousavi SM, Golkarian A, Naghibi SA, Kalantar B, Pradhan B. 2017. GIS-based groundwater spring potential mapping using data mining boosted regression tree and probabilistic frequency ratio models in Iran. AIMS Geosci. 3(1):91–115. doi: 10.3934/geosci.2017.1.91.
  • Mukherjee I, Singh UK. 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena. 194:104681. doi: 10.1016/j.catena.2020.104681.
  • Mustafa SMT, Abdollahi K, Verbeiren B, Huysmans M. 2017. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh. Hydrogeol J. 25(5):1357–1375. doi: 10.1007/s10040-017-1547-7.
  • Nafouanti MB, Li J, Nyakilla EE, Mwakipunda GC, Mulashani A. 2023. A novel hybrid random forest linear model approach for forecasting groundwater fluoride contamination. Environ Sci Pollut Res Int. 30(17):50661–50674. doi: 10.1007/s11356-023-25886-w.
  • Naghibi SA, Ahmadi K, Daneshi A. 2017a. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manage. 31(9):2761–2775. doi: 10.1007/s11269-017-1660-3.
  • Naghibi SA, Hashemi H, Berndtsson R, Lee S. 2020. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J Hydrol. 589:125197. doi: 10.1016/j.jhydrol.2020.125197.
  • Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O. 2017b. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol. 548:471–483. doi: 10.1016/j.jhydrol.2017.03.020.
  • Naghibi SA, Moradi Dashtpagerdi M. 2017. Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeol J. 25(1):169–189. doi: 10.1007/s10040-016-1466-z.
  • Naghibi SA, Pourghasemi HR. 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manage. 29(14):5217–5236. doi: 10.1007/s11269-015-1114-8.
  • Naghibi SA, Pourghasemi HR, Abbaspour K. 2018. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor Appl Climatol. 131(3–4):967–984. doi: 10.1007/s00704-016-2022-4.
  • Naghibi SA, Pourghasemi HR, Dixon B. 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 188(1):44. doi: 10.1007/s10661-015-5049-6.
  • Nampak H, Pradhan B, Abd Manap M. 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol. 513:283–300. doi: 10.1016/j.jhydrol.2014.02.053.
  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399(3-4):158–172. doi: 10.1016/j.jhydrol.2010.12.027.
  • Osman AIA, Ahmed AN, Chow MF, Huang YF, El-Shafie A. 2021. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng J. 12(2):1545–1556. doi: 10.1016/j.asej.2020.11.011.
  • Ozdemir A. 2011a. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol. 411(3–4):290–308. doi: 10.1016/j.jhydrol.2011.10.010.
  • Ozdemir A. 2011b. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol. 405(1–2):123–136. doi: 10.1016/j.jhydrol.2011.05.015.
  • Panahi M, Sadhasivam N, Pourghasemi HR, Rezaie F, Lee S. 2020. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J Hydrol. 588:125033. doi: 10.1016/j.jhydrol.2020.125033.
  • Park S, Kim J. 2021. The predictive capability of a novel ensemble tree-based algorithm for assessing groundwater potential. Sustainability. 13(5):2459. doi: 10.3390/su13052459.
  • Pham BT, Jaafari A, Prakash I, Singh SK, Quoc NK, Bui DT. 2019. Hybrid computational intelligence models for groundwater potential mapping. Catena. 182:104101. doi: 10.1016/j.catena.2019.104101.
  • Pham BT, Jaafari A, Van Phong T, Mafi-Gholami D, Amiri M, Van Tao N, Duong V-H, Prakash I. 2021. Naïve Bayes ensemble models for groundwater potential mapping. Ecol Inf. 64:101389. doi: 10.1016/j.ecoinf.2021.101389.
  • Prasad P, Loveson VJ, Kotha M, Yadav R. 2020. Application of machine learning techniques in groundwater potential mapping along the west coast of India. GISci. Remote Sens. 57(6):735–752. doi: 10.1080/15481603.2020.1794104.
  • Priya U, Iqbal MA, Salam MA, Nur-E-Alam M, Uddin MF, Islam ARMT, Sarkar SK, Imran SI, Rak AE. 2022. Sustainable groundwater potential zoning with integrating GIS, remote sensing, and AHP model: a case from North-Central Bangladesh. Sustainability. 14(9):5640. doi: 10.3390/su14095640.
  • Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. 2018. CatBoost: unbiased boosting with categorical features. In: Advances in neural information processing systems 31. p. 6637–6647.
  • Pulido-Bosch A, Rigol-Sanchez JP, Vallejos A, Andreu JM, Ceron JC, Molina-Sanchez L, Sola F. 2018. Impacts of agricultural irrigation on groundwater salinity. Environ Earth Sci. 77(5):14.
  • Qadir J, Bhat MS, Alam A, Rashid I. 2020. Mapping groundwater potential zones using remote sensing and GIS approach in Jammu Himalaya, Jammu and Kashmir. GeoJournal. 85(2):487–504. doi: 10.1007/s10708-019-09981-5.
  • Rahmati O, Melesse AM. 2016. Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci Total Environ. 568:1110–1123. doi: 10.1016/j.scitotenv.2016.06.176.
  • Rahmati O, Naghibi SA, Shahabi H, Bui DT, Pradhan B, Azareh A, Rafiei-Sardooi E, Samani AN, Melesse AM. 2018. Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. J Hydrol. 565:248–261. doi: 10.1016/j.jhydrol.2018.08.027.
  • Rasool U, Yin XN, Xu ZX, Rasool MA, Senapathi V, Hussain M, Siddique J, Trabucco JC. 2022. Mapping of groundwater productivity potential with machine learning algorithms: a case study in the provincial capital of Baluchistan, Pakistan. Chemosphere. 303(Pt 3):135265. doi: 10.1016/j.chemosphere.2022.135265.
  • Rizeei HM, Pradhan B, Saharkhiz MA, Lee S. 2019. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol. 579:124172. doi: 10.1016/j.jhydrol.2019.124172.
  • Rong G, Li K, Tong Z, Liu X, Zhang J, Zhang Y, Li T. 2023. Population amount risk assessment of extreme precipitation-induced landslides based on integrated machine learning model and scenario simulation. Geosci Front. 14(3):101541. doi: 10.1016/j.gsf.2023.101541.
  • Sachdeva S, Kumar B. 2021. Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stoch Environ Res Risk Assess. 35(2):287–306. doi: 10.1007/s00477-020-01891-0.
  • Saha R, Baranval NK, Das IC, Kumaranchat VK, Reddy KS. 2022. Application of machine learning and geospatial techniques for groundwater potential mapping. J Indian Soc Remote Sens. 50(10):1995–2010. doi: 10.1007/s12524-022-01582-z.
  • Sahin EK. 2022. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto Int. 37(9):2441–2465. doi: 10.1080/10106049.2020.1831623.
  • Salcedo-Sánchez ER, Garrido Hoyos SE, Esteller Alberich M, Martínez Morales M. 2016. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico). Environ Monit Assess. 188(10):573. doi: 10.1007/s10661-016-5515-9.
  • Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamil Nadu, India. Model Earth Syst Environ. 6(2):1105–1122. doi: 10.1007/s40808-020-00744-7.
  • Sarkar SK, Esraz-Ul-Zannat M, Das PC, Ekram KMM. 2022a. Delineating the groundwater potential zones in Bangladesh. Water Supply. 22(4):4500–4516. doi: 10.2166/ws.2022.113.
  • Sarkar SK, Talukdar S, Rahman A, Roy SK, Shahfahad  . 2022b. Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management. FEBE. 2(1), 43–54. doi: 10.1108/FEBE-09-2021-0044.
  • Shabani M, Masoumi Z, Rezaei A. 2022. Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying. Geo-Spatial Inform Sci. 25(4):600–618. doi: 10.1080/10095020.2022.2069052.
  • Shi N, Li Y, Wen L, Zhang Y. 2022. Rapid prediction of landslide dam stability considering the missing data using XGBoost algorithm. Landslides. 19(12):2951–2963. doi: 10.1007/s10346-022-01947-y.
  • Sun L, Ma C, Li Y. 2019. Multiple geo-environmental hazards susceptibility assessment: a case study in Luoning County, Henan Province, China. Geomatics Nat Hazards Risk. 10(1):2009–2029. doi: 10.1080/19475705.2019.1658648.
  • Sun Y, Zhang F, Lin H, Xu S. 2022. A forest fire susceptibility modeling approach based on light gradient boosting machine algorithm. Remote Sens. 14(17):4362. doi: 10.3390/rs14174362.
  • Szczepanek R. 2022. Daily streamflow forecasting in mountainous catchment using XGBoost, LightGBM and CatBoost. Hydrology. 9(12):226. doi: 10.3390/hydrology9120226.
  • Taheri K, Taheri M, Parise M. 2016. Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: a case study in Kermanshah Province, western Iran. Environ Earth Sci. 75(17):16.
  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S. 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci. 9(1):18. doi: 10.1007/s12517-015-2166-z.
  • Talukdar S, Mallick J, Sarkar SK, Roy SK, Islam ARMT, Praveen B, Naikoo MW, Rahman A, Sobnam M. 2022. Novel hybrid models to enhance the efficiency of groundwater potentiality model. Appl Water Sci. 12(4):62. doi: 10.1007/s13201-022-01571-0.
  • Termeh SVR, Khosravi K, Sartaj M, Keesstra SD, Tsai FTC, Dijksma R, Pham BT. 2019. Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeol J. 27(7):2511–2534. doi: 10.1007/s10040-019-02017-9.
  • Thanh NN, Thunyawatcharakul P, Ngu NH, Chotpantarat S. 2022. Global review of groundwater potential models in the last decade: parameters, model techniques, and validation. J Hydrol. 614:128501. doi: 10.1016/j.jhydrol.2022.128501.
  • Tien Bui D, Ho T-C, Pradhan B, Pham B-T, Nhu V-H, Revhaug I. 2016. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci. 75:1–22.
  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena. 118:124–135. doi: 10.1016/j.catena.2014.02.005.
  • Wang D, Xu H, Shi Y, Ding Z, Deng Z, Liu Z, Xu X, Lu Z, Wang G, Cheng Z, et al. 2021. The groundwater potential assessment system based on cloud computing: a case study in islands region. Comput Commun. 178:83–97. doi: 10.1016/j.comcom.2021.06.028.
  • Wang ZT, Wang JP, Han JJ. 2022. Spatial prediction of groundwater potential and driving factor analysis based on deep learning and geographical detector in an arid endorheic basin. Ecol Indic. 142:109256. doi: 10.1016/j.ecolind.2022.109256.
  • Wei A, Li D, Bai X, Wang R, Fu X, Yu J. 2022. Application of machine learning to groundwater spring potential mapping using averaging, bagging, and boosting techniques. Water Supply. 22(8):6882–6894. doi: 10.2166/ws.2022.283.
  • Xie X, Wang Y, Ellis A, Liu C, Duan M, Li J. 2014. Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: constraints from elemental geochemistry. J Hydrol. 519:3541–3549. doi: 10.1016/j.jhydrol.2014.10.044.
  • Xiong H, Ma C, Li M, Tan J, Wang Y. 2023. Landslide susceptibility prediction considering land use change and human activity: a case study under rapid urban expansion and afforestation in China. Sci Total Environ. 866:161430. doi: 10.1016/j.scitotenv.2023.161430.
  • Xiong H, Wang Y, Guo X, Han J, Ma C, Zhang X. 2022. Current status and future challenges of groundwater vulnerability assessment: a bibliometric analysis. J Hydrol. 615:128694. doi: 10.1016/j.jhydrol.2022.128694.
  • Yadav B, Malav LC, Jangir A, Kharia SK, Singh SV, Yeasin M, Nogiya M, Meena RL, Meena RS, Tailor BL, et al. 2023. Application of analytical hierarchical process, multi-influencing factor, and geospatial techniques for groundwater potential zonation in a semi-arid region of western India. J Contam Hydrol. 253:104122. doi: 10.1016/j.jconhyd.2022.104122.
  • Yang C, Liu L-L, Huang F, Huang L, Wang X-M. 2023. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 123:198–216. doi: 10.1016/j.gr.2022.05.012.
  • Yen HPH, Pham BT, Van Phong T, Ha DH, Costache R, Van Le H, Nguyen HD, Amiri M, Van Tao N, Prakash I. 2021. Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: a case study at Gia Lai province, Vietnam. Geosci Front. 12(5):101154. doi: 10.1016/j.gsf.2021.101154.
  • Yousefi S, Sadhasivam N, Pourghasemi HR, Nazarlou HG, Golkar F, Tavangar S, Santosh M. 2020. Groundwater spring potential assessment using new ensemble data mining techniques. Measurement. 157:107652. doi: 10.1016/j.measurement.2020.107652.
  • Yu J, Zheng W, Xu L, Meng F, Li J, Zhangzhong L. 2022. TPE-CatBoost: an adaptive model for soil moisture spatial estimation in the main maize-producing areas of China with multiple environment covariates. J Hydrol. 613:128465. doi: 10.1016/j.jhydrol.2022.128465.
  • Zabihi M, Pourghasemi HR, Pourtaghi ZS, Behzadfar M. 2016. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ Earth Sci. 75(8):19.
  • Zhang C, Ma Y. 2012. Ensemble machine learning: methods and applications. New York, NY: Springer.
  • Zhang K, Schölkopf B, Muandet K, Wang Z. 2013. Domain adaptation under target and conditional shift. In: Proceedingss of International Conference on Machine Learning. p. 819–827.
  • Zhang W, Wu C, Tang L, Gu X, Wang L. 2023. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res. 123:41–53. doi: 10.1016/j.gr.2022.10.004.
  • Zhang Y, Zhao Z, Zheng J. 2020. CatBoost: a new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. J Hydrol. 588:125087. doi: 10.1016/j.jhydrol.2020.125087.
  • Zhang Z, Hu H, Tian F, Yao X, Sivapalan M. 2014. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an Tarim River basin of western China. Hydrol Earth Syst Sci. 18(10):3951–3967. doi: 10.5194/hess-18-3951-2014.
  • Zhao C, Wang Y, Chen X, Li B. 2005. Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software. Ecol Modell. 187(2–3):341–351. doi: 10.1016/j.ecolmodel.2004.10.019.