787
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pluvial flood susceptibility mapping for data-scarce urban areas using graph attention network and basic flood conditioning factors

, &
Article: 2275692 | Received 07 Aug 2023, Accepted 20 Oct 2023, Published online: 02 Nov 2023

References

  • Abdelal Q, Al-Hmoud A. 2021. Low-cost, low-energy, wireless hydrological monitoring platform: design, deployment, and evaluation. J Sens. 2021:1–14doi: 10.1155/2021/8848955.
  • Abedi R, Costache R, Shafizadeh-Moghadam H, Pham QB. 2022. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 37(19):5479–5496doi: 10.1080/10106049.2021.1920636.
  • Al-Areeq AM, Saleh RAA, Ghanim AAJ, Ghaleb M, Al‑Areeq NM, Al-Wajih E. 2023. Flood hazard assessment in yemen using a novel hybrid approach of grey wolf and Levenberg Marquardt optimizers. Geocarto Int. 38(1):1–20doi: 10.1080/10106049.2023.2243884.
  • Albertini C, Miglino D, Iacobellis V, De Paola F, Manfreda S. 2022. Delineation of flood-prone areas in cliffed coastal regions through a procedure based on the geomorphic flood index. J Flood Risk Management. 15(1):e12766doi: 10.1111/jfr3.12766.
  • Alwosheel A, van Cranenburgh S, Chorus CG. 2018. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J Choice Model. 28:167–182doi: 10.1016/j.jocm.2018.07.002.
  • Bentivoglio R, Isufi E, Jonkman SN, Taormina R. 2022. Deep learning methods for flood mapping: a review of existing applications and future research directions. Hydrol Earth Syst Sci. 26(16):4345–4378doi: 10.5194/hess-26-4345-2022.
  • Berthelot D, Carlini N, Goodfellow IJ, Papernot N, Oliver A, Raffel C. 2019. MixMatch: A Holistic Approach to Semi-Supervised Learning. CoRR. 454: 5049–5059. http://arxiv.org/abs/1905.02249.
  • Boller D, Moy de Vitry M, D. Wegner J, Leitão JP. 2019. Automated localization of urban drainage infrastructure from public-access street-level images. Urban Water J. 16(7):480–493doi: 10.1080/1573062X.2019.1687743.
  • Bolya D, Fu C-Y, Dai X, Zhang P, Hoffman J. 2022. Hydra attention: efficient attention with many heads. arXivdoi: 10.48550/ARXIV.2209.07484.
  • Butcher B, Smith BJ. 2020. Feature engineering and selection: a practical approach for predictive models. The American Statistician. 74(3):308–309doi: 10.1080/00031305.2020.1790217.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Modell Software. 95:229–245doi: 10.1016/j.envsoft.2017.06.012.
  • Chiang WL, Li Y, Liu X, Bengio S, Si S, Hsieh CJ. 2019. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 257–266doi: 10.1145/3292500.3330925.
  • Cortes C, Research G, York N. 2004. L 2 regularization for learning kernels. Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 109–116.
  • Costache R, Tien Bui D. 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci Total Environ. 712:136492doi: 10.1016/j.scitotenv.2019.136492.
  • Daksiya V, Mandapaka PV, Lo EYM. 2021. Effect of climate change and urbanisation on flood protection decision-making. J Flood Risk Manag. 14(1):e12681doi: 10.1111/jfr3.12681.
  • Dottori F, Martina MLV, Figueiredo R. 2018. A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. J Flood Risk Manag. 11(S2):S632–S645doi: 10.1111/jfr3.12234.
  • Du S, Cheng X, Huang Q, Chen R, Ward P, Aerts JCJH. 2019. Brief communication: rethinking the 1998 China floods to prepare for a nonstationary future. Nat Hazards Earth Syst Sci. 19(3):715–719doi: 10.5194/nhess-19-715-2019.
  • Falah F, Rahmati O, Rostami M, Ahmadisharaf E, Daliakopoulos IN, Pourghasemi HR, Pourghasemi HR, Gokceoglu C. 2019. 14—Artificial Neural Networks for Flood Susceptibility Mapping in Data-Scarce Urban Areas. In Spatial Modeling in GIS and R for Earth and Environmental Sciences, p. 323–336. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-12-815226-3.00014-4.
  • Fu S, Lyu H, Wang Z, Hao X, Zhang C. 2022. Extracting historical flood locations from news media data by the named entity recognition (NER) model to assess urban flood susceptibility. J Hydrol. 612(PC):128312doi: 10.1016/j.jhydrol.2022.128312.
  • Gao H, Wang Z, Ji S. 2018. Large-scale learnable graph convolutional networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1416–1424doi: 10.1145/3219819.3219947.
  • Getis A, Ord JK. 1992. The analysis of spatial association by use of distance statistics. Geog Anal. 24(3):189–206doi: 10.1111/j.1538-4632.1992.tb00261.x.
  • Giovannettone J, Copenhaver T, Burns M, Choquette S. 2018. A statistical approach to mapping flood susceptibility in the lower connecticut River Valley region. Water Resour Res. 54(10):7603–7618doi: 10.1029/2018WR023018.
  • Gnecco G, Morisi R, Roth G, Sanguineti M, Taramasso AC. 2017. Supervised and semi-supervised classifiers for the detection of flood-prone areas. Soft Comput. 21(13):3673–3685doi: 10.1007/s00500-015-1983-z.
  • Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge, MA, USA: MIT press.
  • Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X. 2015. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape Urban Plann. 135:1–10doi: 10.1016/j.landurbplan.2014.11.007.
  • Hamilton WL, Ying R, Leskovec J. 2017. Inductive representation learning on large graphs. Advances in Neural Information Processing Systems, 2017-Decem (Nips), 1025–1035.
  • Ilia I, Tsangaratos P, Tzampoglou P, Chen W, Hong H. 2022. Flash flood susceptibility mapping using stacking ensemble machine learning models. Geocarto International. 37(27):15010–15036doi: 10.1080/10106049.2022.2093990.
  • Jacinto R, Grosso N, Reis E, Dias L, Santos FD, Garrett P. 2015. Continental Portuguese territory flood susceptibility index—contribution to a vulnerability index. Nat Hazards Earth Syst Sci. 15(8):1907–1919doi: 10.5194/nhess-15-1907-2015.
  • Jahangir MH, Mousavi Reineh SM, Abolghasemi M. 2019. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim Extremes. 25(July):100215doi: 10.1016/j.wace.2019.100215.
  • Jato-Espino D, Lobo A, Ascorbe-Salcedo A. 2019. Urban flood risk mapping using an optimised additive weighting methodology based on open data. J Flood Risk Manag. 12(S1):e12533doi: 10.1111/jfr3.12533.
  • Kingma DP, Ba JL. 2015. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, p. 1–15.
  • Kohansarbaz A, Kohansarbaz A, Shabanlou S, Yosefvand F, Rajabi A. 2022. Modelling flood susceptibility in northern Iran: application of five well-known machine-learning models. Irrig Drain. 71(5):1332–1350doi: 10.1002/ird.2745.
  • Kong X, Yang J, Qiu J, Zhang Q, Chen X, Wang M, Jiang S. 2022. Post-event flood mapping for road networks using taxi GPS data. J Flood Risk Manag. 15(2):e12799doi: 10.1111/jfr3.12799.
  • Leandro J, Schumann A, Pfister A. 2016. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J Hydrol. 535:356–365doi: 10.1016/j.jhydrol.2016.01.060.
  • Lees T, Reece S, Kratzert F, Klotz D, Gauch M, De Bruijn J, Kumar Sahu R, Greve P, Slater L, Dadson SJ. 2022. Hydrological concept formation inside long short-term memory (LSTM) networks. Hydrol Earth Syst Sci. 26(12):3079–3101doi: 10.5194/hess-26-3079-2022.
  • Li P, Yu Y, Huang D, Wang Z, Sharma A. 2023. Regional heatwave prediction using graph neural network and weather station data. Geophys Res Lett. 50:e2023GL103405. doi: 10.1029/2023GL103405.
  • Li W, Liu Y, Liu Z, Gao Z, Huang H, Huang W. 2022. A positive-unlabeled learning algorithm for urban flood susceptibility modeling. Land. 11(11):1971doi: 10.3390/land11111971.
  • Li Y, Osei FB, Hu T, Stein A. 2023. Urban flood susceptibility mapping based on social media data in Chengdu city, China. Sustain Cities Soc. 88:104307doi: 10.1016/j.scs.2022.104307.
  • Masoumi Z. 2022. Flood susceptibility assessment for ungauged sites in urban areas using spatial modeling. J Flood Risk Manag. 15(1):e12767doi: 10.1111/jfr3.12767.
  • Miranda LJ. 2017. Understanding softmax and the negative log-likelihood. Ljvmiranda921.Github.Io
  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W, et al. 1996. Applied linear statistical models, 318. Vol. 4. Chicago: Irwin.
  • Niu Z, Zhong G, Yu H. 2021. A review on the attention mechanism of deep learning. Neurocomputing. 452:48–62doi: 10.1016/j.neucom.2021.03.091.
  • Nsangou D, Kpoumié A, Mfonka Z, Bateni SM, Ngouh AN, Ndam Ngoupayou JR. 2022. The Mfoundi watershed at Yaoundé in the humid tropical zone of Cameroon: a case study of urban flood susceptibility mapping. Earth Syst Environ. 6(1):99–120doi: 10.1007/s41748-021-00276-9.
  • Ouma YO, Omai L. 2023. Flood susceptibility mapping using image-based 2D-CNN deep learning: overview and case study application using multiparametric spatial data in data-scarce urban environments. Int J Intell Syst. 2023:1–23doi: 10.1155/2023/5672401.
  • Prasad P, Loveson VJ, Das B, Kotha M. 2022. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto Int. 37(16):4571–4593doi: 10.1080/10106049.2021.1892209.
  • Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Kornejady A, Karimidastenaei Z, Mohammadi F, Stefanidis S, et al. 2020. Development of novel hybridized models for urban flood susceptibility mapping. Sci Rep. 10(1): 1–19. doi: 10.1038/s41598-020-69703-7.
  • Ran J, Nedovic-Budic Z. 2016. Integrating spatial planning and flood risk management: a new conceptual framework for the spatially integrated policy infrastructure. Comput Environ Urban Syst. 57:68–79doi: 10.1016/j.compenvurbsys.2016.01.008.
  • Saber M, Boulmaiz T, Guermoui M, Abdrabo KI, Kantoush SA, Sumi T, Boutaghane H, Nohara D, Mabrouk E. 2022. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto International. 37(25):7462–7487doi: 10.1080/10106049.2021.1974959.
  • Seleem O, Ayzel G, Bronstert A, Heistermann M. 2023. Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany. Nat Hazards Earth Syst Sci. 23(2):809–822doi: 10.5194/nhess-23-809-2023.
  • Seleem O, Ayzel G, de Souza ACT, Bronstert A, Heistermann M. 2022. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomatics Nat Hazards Risk. 13(1):1640–1662doi: 10.1080/19475705.2022.2097131.
  • Sun Y, Xie Z, Wang H, Huang X, Hu Q. 2022. Solar wind speed prediction via graph attention network. Space Weather. 20(7):e2022SW003128doi: 10.1029/2022SW003128.
  • Tang X, Hong H, Shu Y, Tang H, Li J, Liu W. 2019. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. J Hydrol. 576:583–595doi: 10.1016/j.jhydrol.2019.06.058.
  • Tehrany MS, Lee MJ, Pradhan B, Jebur MN, Lee S. 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci. 72(10):4001–4015doi: 10.1007/s12665-014-3289-3.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. Advances in Neural Information Processing Systems, 2017-Decem (Nips), 5999–6009.
  • Veličković P, Casanova A, Liò P, Cucurull G, Romero A, Bengio Y. 2018. Graph attention networks. 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings, p. 1–12.
  • Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. 2017. Graph Attention Networks. arXivdoi: 10.48550/ARXIV.1710.10903.
  • Vojtek M, Vojteková J. 2019. Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water (Switzerland). 11(2):364doi: 10.3390/w11020364.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482doi: 10.1016/j.jhydrol.2019.124482.
  • Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. 2021. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst. 32(1):4–24doi: 10.1109/TNNLS.2020.2978386.
  • Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. 2018. Graph convolutional neural networks for web-scale recommender systems. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 974–983doi: 10.1145/3219819.3219890.
  • Ying X. 2019. An overview of overfitting and its solutions. J Phys: conf Ser. 1168(2):22022doi: 10.1088/1742-6596/1168/2/022022.
  • Young A, Bhattacharya B, Zevenbergen C. 2021. A rainfall threshold-based approach to early warnings in urban data-scarce regions: a case study of pluvial flooding in Alexandria, Egypt. J Flood Risk Management. 14(2):e12702doi: 10.1111/jfr3.12702.
  • Zeng Z, Lan J, Hamidi AR, Zou S. 2020. Integrating internet media into urban flooding susceptibility assessment: a case study in China. Cities. 101(1037):102697doi: 10.1016/j.cities.2020.102697.
  • Zhang C, Yu JJQ, Liu Y. 2019. Spatial-temporal graph attention networks: a deep learning approach for traffic forecasting. IEEE Access. 7:166246–166256doi: 10.1109/ACCESS.2019.2953888.
  • Zhang W, Villarini G, Vecchi GA, Smith JA. 2018. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature. 563(7731):384–388doi: 10.1038/s41586-018-0676-z.
  • Zhao G, Pang B, Xu Z, Cui L, Wang J, Zuo D, Peng D. 2021. Improving urban flood susceptibility mapping using transfer learning. J Hydrol. 602:126777doi: 10.1016/j.jhydrol.2021.126777.
  • Zhao G, Pang B, Xu Z, Peng D, Xu L. 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ. 659:940–949doi: 10.1016/j.scitotenv.2018.12.217.
  • Zzaman RU, Nowreen S, Billah M, Islam AS. 2021. Flood hazard mapping of Sangu River basin in Bangladesh using multi-criteria analysis of hydro-geomorphological factors. J Flood Risk Manag. 14(3):e12715doi: 10.1111/jfr3.12715.