1,220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Future changes of summer monsoon rainfall and temperature over Bangladesh using 27 CMIP6 models

, , , , , , & ORCID Icon show all
Article: 2285342 | Received 05 Jun 2023, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Alamgir M, Ahmed K, Homsi R, Dewan A, Wang JJ, Shahid S. 2019. Downscaling and projection of spatiotemporal changes in temperature of Bangladesh. Earth Syst Environ. 3(3):381–398. doi:10.1007/s41748-019-00121-0.
  • Alamgir M, Khan N, Shahid S, Yaseen ZM, Dewan A, Hassan Q, Rasheed B. 2020. Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch Environ Res Risk Assess. 34(2):447–464. doi:10.1007/s00477-020-01768-2.
  • Ali S, Kiani RS, Reboita MS, Dan L, Eum HI, Cho J, Dairaku K, Khan F, Shreshta ML. 2021. Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. Int J Climatol. 41(1):559–581. doi:10.1002/joc.6638.
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E (, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 259(4):660–684. doi:10.1016/j.foreco.2009.09.001.
  • Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature. 419(6903):224–232. doi:10.1038/nature01092.
  • Almazroui M, Saeed S, Saeed F, Islam MN, Ismail M. 2020. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ. 4(2):297–320. doi:10.1007/s41748-020-00157-0.
  • Ayugi B, Dike V, Ngoma H, Babaousmail H, Mumo R, Ongoma V. 2021. Future changes in precipitation extremes over East Africa based on CMIP6 models. Water. 13(17):2358. doi:10.3390/w13172358.
  • Azad MAK, Islam ARMT, Ayen K, Rahman MS, Shahid S, Mallick J. 2022. Changes in monsoon precipitation patterns over Bangladesh and its teleconnections with global climate. Theor Appl Climatol. 148(3–4):1261–1278. doi:10.1007/s00704-022-03996-.
  • BBS. 2020. Bangladesh Bureau of Statistics. Statistical Yearbook Bangladesh 2019. Dhaka, Bangladesh: Statistics & Informatics Division (SID), Ministry of Planning Government of The People’s Republic of Bangladesh.
  • Bosu H, Rashid T, Mannan A, Meandad J. 2021. Climate change analysis for Bangladesh using CMIP5 models. Dhaka Univ J Earth Env Sci. 9(1):1–12. doi:10.3329/dujees.v9i1.54856.
  • Caesar J, Janes T, Lindsay A, Bhaskaran B. 2015. Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems. Environ Sci Process Impacts. 17(6):1047–1056. doi:10.1039/c4em00650j.
  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH. 2012. Multi-model climate change projections for India under representative concentration pathways. Curr Sci. 103(7):791–802.
  • Chen W, Jiang Z, Li L. 2011. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J Clim. 24(17):4741–4756. doi:10.1175/2011JCLI4102.1.
  • Das S, Islam ARMT, Kamruzzaman M. 2023. Assessment of climate change impact on temperature extremes in a tropical region with the climate projections from CMIP6 model. Clim Dyn. 60(1–2):603–622. doi:10.1007/s00382-022-06416-9.
  • Das S, Kamruzzaman M, Islam ARMT. 2022. Assessment of characteristic changes of regional estimation of extreme rainfall under climate change: a case study in a tropical monsoon region with the climate projections from CMIP6 model. J Hydrol. 610:128002. doi:10.1016/j.jhydrol.2022.128002.
  • Eckstein D, Künzel V, Schäfer L. 2021. The global climate risk index 2021. Bonn: Germanwatch.
  • Eyring V,Bony S,Meehl GA,Senior CA,Stevens B,Stouffer RJ,Taylor KE. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev. 9(5):1937–1958. doi:10.5194/gmd-9-1937-2016.
  • Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, Collins WD, Gier BK, Hall AD, Hoffman FM, et al. 2019. Taking climate model evaluation to the next level. Nature Clim Change. 9(2):102–110. doi:10.1038/s41558-018-0355-y.
  • Fahad MGR, Saiful Islam AKM, Nazari R, Alfi Hasan M, Tarekul Islam GM, Bala SK. 2018. Regional changes of precipitation and temperature over Bangladesh using bias‐corrected multi‐model ensemble projections considering high‐emission pathways. Int J Climatol. 38(4):1634–1648. doi:10.1002/joc.5284.
  • Fan X, Wang Q, Wang M. 2012. Changes in temperature and precipitation extremes during 1959–2008 in Shanxi, China. Theor Appl Climatol. 109(1–2):283–303. doi:10.1007/s00704-011-0577-7.
  • Ghose B, Islam ARMT, Islam HT, Hasanuzzaman M, Huang J, Hu Z, Moniruzzaman M, Gustave W, Karim M, Ibrahim SM. 2021. Rain-fed rice yield fluctuation to climatic anomalies in Bangladesh. Int J Plant Prod. 15(2):183–201. doi:10.1007/s42106-021-00131-x.
  • Gilbert RO. 1987. Statistical methods for environmental pollution monitoring. John Wiley & Sons.
  • Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T. 2012. Technical Note: downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrol Earth Syst Sci. 16(9):3383–3390. doi:10.5194/hess-16-3383-2012.
  • Gusain A, Ghosh S, Karmakar S. 2020. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos Res. 232:104680. doi:10.1016/j.atmosres.2019.104680.
  • Hamed MM, Nashwan MS, Shahid S, bin Ismail T, Wang XJ, Dewan A, Asaduzzaman M. 2022. Inconsistency in historical simulations and future projections of temperature and rainfall: a comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmos Res. 265:105927. doi:10.1016/j.atmosres.2021.105927.
  • Hasan MA, Islam AS, Akanda AS. 2018. Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data. Clim Dyn. 51(5–6):2169–2190. doi:10.1007/s00382-017-4006-1.
  • Hasan MA, Islam GMS, Islam T, Bala SK, Paul S, Billah M, Rahman MM, Fahad MGR. 2015 Mar. A Comparative Analysis of cmip3 and cmip5 Climate Projections over Bangladesh. In: 5th International Conference on Water and Flood Management, Dhaka; p. 6–8.
  • Hossain MB, Rahman MM, Biswas JC, Miah MMU, Akhter S, Maniruzzaman M, Choudhury AK, Ahmed F, Shiragi MHK, Kalra N. 2017. Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. Int J Recycl Org Waste Agricult. 6(4):311–319. doi:10.1007/s40093-017-0179-1.
  • Hossain MB, Roy D, Maniruzzaman M, Biswas JC, Naher UA, Haque MM, Kalra N. 2021. Response of crop water requirement and yield of irrigated rice to elevated temperature in Bangladesh. Int J Agron. 2021:1–11. doi:10.1155/2021/9963201.
  • IPCC. 2001. Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change [Houghton, JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors.]. Cambridge, UK: Cambridge University Press; 881 pp.
  • IPCC. 2007. Summary for Policymakers. In: Climate change 2007: the physical science basis; contribution of working group I to the fourth assessment report of IPCC. Cambridge, UK: Cambridge University Press.
  • IPCC. 2013. Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge, UK: Cambridge University Press, 1535 pp.
  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: IPCC.
  • Islam ARMT, Shen S, Yang SB, Hu Z, Chu R. 2019. Assessing recent impacts of climate change on design water requirement of Boro rice season in Bangladesh. Theor Appl Climatol. 138(1–2):97–113. doi:10.1007/s00704-019-02818-8.
  • Islam HM, Kamruzzaman M, Shahid S, Mainuddin M, Alam E, Islam ARM, Biswas JC, Islam M. 2023. Spatiotemporal changes in temperature projections over Bangladesh using multi-model ensemble data. Front Environ Sci. 10:2676. doi:10.3389/fenvs.2022.1074974.
  • Islam HT, Islam ARMT, Abdullah-Al-Mahbub M, Shahid S, Tasnuva A, Kamruzzaman M, Hu Z, Elbeltagi A, Kabir MM, Salam MA, et al. 2021. Spatiotemporal changes and modulations of extreme climatic indices in monsoon-dominated climate region linkage with large-scale atmospheric oscillation. Atmos Res. 264:105840. doi:10.1016/j.atmosres.2021.105840.
  • Islam HT, Islam ARMT, Shahid S, Alam GM, Biswas JC, Rahman MM, Roy DK, Kamruzzaman M. 2022. Future precipitation projection in Bangladesh using SimCLIM climate model: a multi‐model ensemble approach. Int J Climatol. 42(13):6716–6740. doi:10.1002/joc.7605.
  • Iyakaremye V, Zeng G, Yang X, Zhang G, Ullah I, Gahigi A, Vuguziga F, Asfaw TG, Ayugi B. 2021. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci Total Environ. 790:148162. doi:10.1016/j.scitotenv.2021.148162.
  • Kamal AM, Hossain F, Shahid S. 2021. Spatiotemporal changes in rainfall and droughts of Bangladesh for1. 5 and 2° C temperature rise scenarios of CMIP6 models. Theor Appl Climatol. 146(1–2):527–542. doi:10.1007/s00704-021-03735-5.
  • Kamruzzaman M, Hwang S, Cho J, Jang MW, Jeong H. 2019a. Evaluating the spatiotemporal characteristics of agricultural drought in Bangladesh using effective drought index. Water. 11(12):2437. doi:10.3390/w11122437.
  • Kamruzzaman M, Jang MW, Cho J, Hwang, S. 2019b. Future changes in precipitation and drought characteristics over Bangladesh under CMIP5 climatological projections. Water, 11(11):2219. doi:10.3390/w11112219.
  • Kamruzzaman M, Shahid S, Islam ARM, Hwang S, Cho J, Zaman M, Uz A, Ahmed M, Rahman M, Hossain M. 2021. Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: a preliminary study. Theor Appl Climatol. 145(3–4):1385–1406. doi:10.1007/s00704-021-03691-0.
  • Kamruzzaman M, Shahid S, Roy DK, Islam ARMT, Hwang S, Cho J, Zaman MAU, Sultana T, Rashid T, Akter F. 2022. Assessment of CMIP6 global climate models in reconstructing rainfall climatology of Bangladesh. Int J Climatol. 42(7):3928–3953. doi:10.1002/joc.7452.
  • Kamruzzaman M, Wahid S, Shahid S, Alam E, Mainuddin M, Islam HT, Cho J, Rahman MM, Biswas JC, Thorp KR. 2023. Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs. Heliyon. 9(5):e16274. doi:10.1016/j.heliyon.2023.e16274.
  • Katzenberger A, Schewe J, Pongratz J, Levermann A. 2021. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst Dynam. 12(2):367–386. doi:10.5194/esd-12-367-2021.
  • Kendall MG. 1975. Rank correlation methods. London: Charles Griffin.
  • Khan N, Shahid S, Chung ES, Behlil F, Darwish MS. 2020. Spatiotemporal changes in precipitation extremes in the arid province of Pakistan with removal of the influence of natural climate variability. Theor Appl Climatol. 142(3–4):1447–1462. doi:10.1007/s00704-020-03389-9.
  • Kusunoki S, Yoshimura J, Yoshimura H, Noda A, Oouchi K, Mizuta R. 2006. Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J Meteorol Soc Jpn. 84(4):581–611. doi:10.2151/jmsj.84.581.
  • Mainuddin M, Peña-Arancibia JL, Karim F, Hasan MM, Mojid MA, Kirby JM. 2022. Long-term spatio-temporal variability and trends in rainfall and temperature extremes and their potential risk to rice production in Bangladesh. PLoS Clim. 1(3):e0000009. doi:10.1371/journal.pclm.0000009.
  • Mann HB. 1945. Nonparametric tests against trend. Econometrica: J Econ Soc. 13(3):245–259. doi:10.2307/1907187.
  • Mishra V, Bhatia U, Tiwari AD. 2020. Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Sci Data. 7(1):338. doi:10.1038/s41597-020-00681-1.
  • Mohsenipour M, Shahid S, Chung ES, Wang XJ. 2018. Changing pattern of droughts during cropping seasons of Bangladesh. Water Resour Manage. 32(5):1555–1568. doi:10.1007/s11269-017-1890-4.
  • Mondal MS, Nowreen S, Sakib MN. 2020. Scale-dependent reliability of projected rainfalls over Bangladesh with the PRECIS model. Climate. 8(2):20. doi:10.3390/cli8020020.
  • Naher UA, Hossain MB, Haque MM, Maniruzzaman M, Choudhury AK, Biswas JC. 2020. Effect of long-term nutrient management on soil organic carbon sequestration in rice-rice-fallow rotation. Curr Sci. 118(4):587. doi:10.18520/cs/v118/i4/587-592.
  • Nashwan MS, Shahid S. 2022. Future precipitation changes in Egypt under the 1.5 and 2.0 C global warming goals using CMIP6 multimodel ensemble. Atmos Res. 265:105908. doi:10.1016/j.atmosres.2021.105908.
  • Ngoma H, Wen W, Ayugi B, Babaousmail H, Karim R, Ongoma V. 2021. Evaluation of precipitation simulations in CMIP6 models over Uganda. Int J Climatol. 41(9):4743–4768. doi:10.1002/joc.7098.
  • Pattnayak KC, Kar SC, Dalal M, Pattnayak RK. 2017. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Global Planet Change. 152:152–166. doi:10.1016/j.gloplacha.2017.03.005.
  • Pour SH, Shahid S, Chung ES, Wang XJ. 2018. Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmos Res. 213:149–162. doi:10.1016/j.atmosres.2018.06.006.
  • Rahman MS, Islam ARMT. 2019. Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Sci Total Environ. 690:370–387. doi:10.1016/j.scitotenv.2019.06.529.
  • Rashid HE. 1991. Geography of Bangladesh. 2nd ed. Dhaka: University Press.
  • Rashid HE. 2019. Geography of Bangladesh. Routledge.
  • Real MKH, Mia MY, Mallick J, Bindajam AA, Islam ARMT. 2023. Trends in climate and influence of climate-driven crop yields in southern coastal region, Bangladesh. Theor Appl Climatol. 152(1–2):167–180. doi:10.1007/s00704-023-04382-8.
  • Rivera JA, Arnould G. 2020. Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: climatic features and long-term trends (1901–2014). Atmos Res. 241:104953. doi:10.1016/j.atmosres.2020.104953.
  • Salam R, Islam ARMT, Pham QB, Dehghani M, Al Ansari N, Linh NTT. 2020. The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Sci Rep. 10(1):20171. doi:10.1038/s41598-020-77183-y.
  • Sein ZMM, Zhi X, Ullah I, Azam K, Ngoma H, Saleem F, Xing Y, Iyakaremye V, Syed S, Hina S, et al. 2021. Recent variability of sub-seasonal monsoon precipitation and its potential drivers in Myanmar using in-situ observation during 1981–2020. Int J Climatol. 42(6):3341–3359. doi:https://doi.org/10.1002/joc.7419.
  • Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc. 63(324):1379–1389. doi:10.1080/01621459.1968.10480934.
  • Seneviratne SI, Hauser M. 2020. Regional climate sensitivity of climate extremes in CMIP6 versus CMIP5 multimodel ensembles. Earth’s Future. 8(9) doi:10.1029/2019EF001474.
  • Shahi NK, Das S, Ghosh S, Maharana P, Rai S. 2021. Projected changes in the mean and intra-seasonal variability of the Indian summer monsoon in the RegCM CORDEX-CORE simulations under higher warming conditions. Clim Dyn. 57(5–6):1489–1506. doi:10.1007/s00382-021-05771-3.
  • Shahi NK, Rai S, Verma S, Bhatla R. 2023. Assessment of future changes in high-impact precipitation events for India using CMIP6 models. Theor Appl Climatol. 151(1–2):843–857. doi:10.1007/s00704-022-04309-9.
  • Shahid S. 2011. Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim Change. 105(3–4):433–453. doi:10.1007/s10584-010-9895-5.
  • Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R. 2015. Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global Planet Change. 124:62–78. doi:10.1016/j.gloplacha.2014.11.004.
  • Song YH, Chung ES, Shahid S. 2021. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation model s. Int J Climatol. 41(13):5899–5919. doi:10.1002/joc.7159.
  • Su B, Huang J, Mondal SK, Zhai J, Wang Y, Wen S, Gao M, Lv Y, Jiang S, Jiang T, et al. 2021. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos Res. 250:105375. doi:10.1016/j.atmosres.2020.105375.
  • Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res. 106(D7):7183–7192. doi:10.1029/2000JD900719.
  • Turner AG, Slingo JM. 2009. Subseasonal extremes of precipitation and active‐break cycles of the Indian summer monsoon in a climate‐change scenario. Quart J Royal Meteoro Soc. 135(640):549–567. doi:10.1002/qj.401.
  • Ullah I, Ma X, Asfaw TG, Yin J, Iyakaremye V, Saleem F, Xing Y, Azam K, Syed S. 2022b. Projected changes in increased drought risks over South Asia under a warmer climate. Earth’s Future. 10(10):e2022EF002830. doi:10.1029/2022EF002830.
  • Ullah I, Saleem F, Iyakaremye V, Yin J, Ma X, Syed S, Hina S, Asfaw TG, Omer A. 2022a. Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earth’s Future. 10(2):2021EF002240. doi:10.1029/2021EF002240.
  • Wang B, Zheng L, Liu DL, Ji F, Clark A, Yu Q. 2018. Using multi‐model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. Int J Climatol. 38(13):4891–4902. doi:10.1002/joc.5705.
  • Wang X, Hou X, Piao Y, Feng A, Li Y. 2021. Climate change projections of temperature over the coastal area of China using simclim. Front Environ Sci. 9:548. doi:10.3389/fenvs.2021.782259.
  • Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, et al. 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ. 733:137782. doi:10.1016/j.scitotenv.2020.137782.
  • Wyser K, Kjellström E, Koenigk T, Martins H, Döscher R. 2020. Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ Res Lett. 15(5):054020. doi:10.1088/1748-9326/ab81c2.
  • Yue Y, Yan D, Yue Q, Ji G, Wang Z. 2021. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos. Res. 264:105828. doi:10.1016/j.atmosres.2021.105828.
  • Zhao Y,Qian C,Zhang W,He D,Qi Y. 2021. Extreme temperature indices in Eurasia in a CMIP6 multi‐model ensemble: Evaluation and projection. Intl Journal of Climatology. 41(11):5368–5385. doi:10.1002/joc.7134.
  • Zhu H, Jiang Z, Li J, Li W, Sun C, Li L. 2020. Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv Atmos Sci. 37(10):1119–1132. doi:10.1007/s00376-020-9289-1.