2,211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood hazard mapping using GIS-based statistical model in vulnerable riparian regions of sub-tropical environment

, , ORCID Icon, , &
Article: 2285355 | Received 25 Aug 2023, Accepted 15 Nov 2023, Published online: 15 Dec 2023

References

  • Abdelkarim A, Al-Alola SS, Alogayell HM, Mohamed SA, Alkadi II, Ismail IY. 2020. Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-Shamal Train pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia. Water. 12(6):1702. doi: 10.3390/w12061702.
  • Adiat K, Nawawi M, Abdullah K. 2012. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool – A case of predicting potential zones of sustainable groundwater resources. J Hydrol. 440-441:75–89. doi: 10.1016/j.jhydrol.2012.03.028.
  • Agarwal R, Garg PK. 2015. Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour Manage. 30(1):243–260. doi: 10.1007/s11269-015-1159-8.
  • Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M. 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 34(11):1252–1272. doi: 10.1080/10106049.2018.1474276.
  • Akay H. 2021. Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput. 25(14):9325–9346. doi: 10.1007/s00500-021-05903-1.
  • Al-Aizari A, Al-Masnay YA, Aydda A, Zhang J, Ullah K, Islam ARMT, Habib T, Kaku DU, Nizeyimana JC, Al-Shaibah B, et al. 2022. Assessment analysis of flood susceptibility in tropical desert area: a case study of Yemen. Remote Sens. 14(16):4050. doi: 10.3390/rs14164050.
  • Aldiansyah S, Wardani F. 2023. Evaluation of flood susceptibility prediction based on a resampling method using machine learning. J Water Clim Change. 14(3):937–961. doi: 10.2166/wcc.2023.494.
  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA. 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic. 117:106620. doi: 10.1016/j.ecolind.2020.106620.
  • Andualem TG, Demeke GG. 2019. Groundwater potential assessment using GIS and remote sensing: a case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J Hydrol: Reg Stud. 24:100610. doi: 10.1016/j.ejrh.2019.100610.
  • Annual Flood Report. 2019. West Bengal; [accessed 2022 Feb 20]. https://wbiwd.gov.in/uploads/annual_flood_report/ANNUAL_FLOOD_REPORT_2019.pdf.
  • Auerbach LW, Goodbred SL, Mondal DR, Wilson C, Ahmed KR, Roy K, Steckler MS, Small C, Gilligan JM, Ackerly BA. 2015. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat Clim Change. 5(2):153–157. doi: 10.1038/nclimate2472.
  • Aydin HE, Iban MC. 2022. Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations. Nat Hazards. 116(3):2957–2991. doi: 10.1007/s11069-022-05793-y.
  • Azareh A, Rafiei Sardooi E, Choubin B, Barkhori S, Shahdadi A, Adamowski J, Shamshirband S. 2019. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int. 36(20):2345–2365. doi: 10.1080/10106049.2019.1695958.
  • Azizi M, Mohajerani A, Akhavan M. 2018. Simulating and prediction of flow using by WetSpa model in Ziyarat River Basin, Iran. OJG. 08(03):298–312. doi: 10.4236/ojg.2018.83019.
  • Bahremand A, De Smedt F, Corluy J, Liu YW, Poorova J, Velcicka L, Kunikova E. 2007. WetSpa model application for assessing reforestation impacts on floods in Margecany–Hornad Watershed, Slovakia. Water Resour Manage. 21(8):1373–1391. doi: 10.1007/s11269-006-9089-0.
  • Baig MA, Xiong D, Rahman M, Islam MM, Elbeltagi A, Yigez B, Rai DK, Tayab MR, Dewan A. 2021. How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping? Nat Hazards. 113: 1543–1562. doi: 10.21203/rs.3.rs-749595/v1.
  • Balamurugan R, Choudhary K, Raja SP. 2022. Prediction of flooding due to heavy rainfall in India using machine learning algorithms: providing advanced warning. IEEE Syst Man Cybern Mag. 8(4):26–33. doi: 10.1109/MSMC.2022.3183806.
  • Bera S, Das A, Mazumder T. 2022. Evaluation of machine learning, information theory and multi-criteria decision analysis methods for flood susceptibility mapping under varying spatial scale of analyses. Remote Sens Appl: Soc Environ. 25:100686. doi: 10.1016/j.rsase.2021.100686.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull. 24(1):43–69. doi: 10.1080/02626667909491834.
  • Bhardwaj S, Veerappan R. 2023. Flood susceptibility zonation using Dempster-Shafer evidential belief function (EBF) method in Chalakudy Taluk, Kerala, India. Switzerland AG: Springer eBooks; p. 79–109. doi: 10.1007/978-3-031-21618-3_5.
  • Bhattacharjee S, Kumar P, Thakur PK, Gupta K. 2020. Hydrodynamic modelling and vulnerability analysis to assess flood risk in a dense Indian city using geospatial techniques. Nat Hazards. 105(2):2117–2145. doi: 10.1007/s11069-020-04392-z.
  • Biswas S, Mitra R, Roy D, Mandal DK. 2022. Flash flood susceptibility mapping in Alipurduar district using multi-criteria decision analysis approach. Res Square. doi: 10.21203/rs.3.rs-2093997/v1.
  • Bouamrane A, Derdous O, Dahri N, Tachi SE, Boutebba K, Bouziane MT. 2020. A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). Int J River Basin Manage. 20(2):203–213. doi: 10.1080/15715124.2020.1830786.
  • Bui DT, Arabameri A, Islam ARMT, Abba SI, Pandey MK, Ajin RS, Pham BT. 2022. Flood susceptibility computation using state-of-the-art machine learning and optimization algorithms. Res Square. doi: 10.21203/rs.3.rs-1405369/v1.
  • Bui DT, Khosravi K, Shahabi H, Daggupati P, Adamowski J, Melesse AM, Pham BT, Pourghasemi HR, Mahmoudi M, Bahrami S, et al. 2019. Flood spatial modeling in Northern Iran using remote sensing and GIS: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing. 11(13):1589. doi: 10.3390/rs11131589.
  • Cabrera JS, Lee HS. 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model. J Flood Risk Manage. 13(2):e12607. doi: 10.1111/jfr3.12607.
  • Cao Y, Jia H, Xiong J, Cheng W, Li K, Pang Q, Yong Z. 2020. Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province, China. IJGI. 9(12):748. doi: 10.3390/ijgi9120748.
  • Central Water Commission, Annual Report 2009–10. 2010. Ministry of Water Resources, Government of India; [accessed 2022 Feb 20]. https://cwc.gov.in/sites/default/files/Final%20Annual%20Report%202009_10.pdf.
  • Chakraborty S, Mukhopadhyay S. 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Nat Hazards. 99(1):247–274. doi: 10.1007/s11069-019-03737-7.
  • Chang DY. 1996. Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res. 95(3):649–655. doi: 10.1016/0377-2217(95)00300-2.
  • Chattaraj D, Paul B, Sarkar S. 2021. Integrated multi-parametric analytic hierarchy process (AHP) and geographic information system (GIS) based spatial modelling for flood and water logging susceptibility mapping: a case study of English Bazar Municipality of Malda, West Bengal, India. Nat Hazards Earth Syst Sci Discuss. :1–20. doi: 10.5194/nhess-2020-399.
  • Chen TY. 2021. A likelihood-based preference ranking organization method using dual point operators for multiple criteria decision analysis in Pythagorean fuzzy uncertain contexts. Expert Syst Appl. 176:114881. doi: 10.1016/j.eswa.2021.114881.
  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB. 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol. 575:864–873. doi: 10.1016/j.jhydrol.2019.05.089.
  • Chen G, Hou J, Zhou N, Yang S, Tong Y, Su F, Huang L, Bi X. 2020. High-resolution urban flood forecasting by using a coupled atmospheric and hydrodynamic flood models. Front Earth Sci. 8:545612. doi: 10.3389/feart.2020.545612.
  • Chenini I, Ben Mammou A. 2010. Groundwater recharge study in arid region: An approach using GIS techniques and numerical modeling. Comput Geosci. 36(6):801–817. doi: 10.1016/j.cageo.2009.06.014.
  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, et al. 2020. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ. 701:134979. doi: 10.1016/j.scitotenv.2019.134979.
  • Chiu Y, Raina N, Chen H. 2021. Evolution of flood defense strategies: toward nature-based solutions. Environments. 9(1):2. doi: 10.3390/environments9010002.
  • Chowdhuri I, Pal SC, Chakrabortty R. 2020. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res. 65(5):1466–1489. doi: 10.1016/j.asr.2019.12.003.
  • Costache R, Trung Tin T, Arabameri A, Crăciun A, Ajin RS, Costache I, Reza Md. Towfiqul Islam A, Abba SI, Sahana M, Avand M, et al. 2022. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J Hydrol. 609:127747. doi: 10.1016/j.jhydrol.2022.127747.
  • Costache R. 2019. Flood susceptibility assessment by using bivariate statistics and machine learning models - a useful tool for flood risk management. Water Resour Manage. 33(9):3239–3256. doi: 10.1007/s11269-019-02301-z.
  • Costache R, Arabameri A, Costache I, Crăciun AM, Pham BT. 2022. New machine learning ensemble for flood susceptibility estimation. Water Resour Manage. 36(12):4765–4783. doi: 10.1007/s11269-022-03276-0.
  • Costache R, Barbulescu A, Pham Q. 2021. Integrated framework for detecting the areas prone to flooding generated by flash-floods in small river catchments. Water. 13(6):758. doi: 10.3390/w13060758.
  • Costache R, Ngo PTT, Bui DT. 2020. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water. 12(6):1549. doi: 10.3390/w12061549.
  • Costache R, Pham QB, Arabameri A, Diaconu DC, Costache I, Crăciun A, Ciobotaru N, Pandey M, Arora A, Ali SA, et al. 2021. Flash-flood propagation susceptibility estimation using weights of evidence and their novel ensembles with multicriteria decision making and machine learning. Geocarto Int. 37(25):8361–8393. doi: 10.1080/10106049.2021.2001580.
  • Da Silva L, Alencar MS, De Almeida AT. 2020. Multidimensional flood risk management under climate changes: bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int J Disaster Risk Reduct. 50:101865. doi: 10.1016/j.ijdrr.2020.101865.
  • Danumah JH, Odai SN, Saley B, Szarzynski J, Thiel MA, Kwaku AA, Kouame FK, Akpa LY. 2016. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (Cote d’ivoire). Geoenviron Disasters. 3(1):1–13. doi: 10.1186/s40677-016-0044-y.
  • Das S. 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab J Geosci. 11:576. doi: 10.1007/s12517-018-3933-4.
  • Das S. 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sens Appl: Soc Environ. 20:100379. doi: 10.1016/j.rsase.2020.100379.
  • Das S, Gupta A. 2021. Multi-criteria decision based geospatial mapping of flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha basin, India. Geosci Front. 12(5):101206. doi: 10.1016/j.gsf.2021.101206.
  • Das S, Gupta A, Ghosh S. 2017. Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spat Inf Res. 25(6):749–756. doi: 10.1007/s41324-017-0144-0.
  • Das B, Mondal M, Das A. 2012. Monitoring of bank line erosion of River Ganga, Malda District, and West Bengal: using RS and GIS compiled with statistical techniques. Int J Geomat Geosci. 3(1):239–248.
  • Das S, Pal S. 2016. Character and cardinality of channel migration of Kalindri River, West Bengal, India. Int Res J Earth Sci. 4(1):13–26.
  • Das S, Pardeshi SD. 2017. Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region, India. Spat Inf Res. 26(1):47–57. doi: 10.1007/s41324-017-0155-x.
  • Das S, Pardeshi SD. 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Appl Water Sci. 8(7):197. doi: 10.1007/s13201-018-0848-x.
  • Das S, Pardeshi SD. 2018. Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: using geospatial techniques. Appl Water Sci. 8:158. doi: 10.1007/s13201-018-0801-z.
  • Das S, Pardeshi SD, Kulkarni PP, Doke A. 2018. Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arab J Geosci. 11:1–13. doi: 10.1007/s12517-018-3522-6.
  • Das S, Scaringi G. 2021. River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India. Nat Hazards. 109(3):2439–2459. doi: 10.1007/s11069-021-04927-y.
  • De Reu J, Bourgeois J, Bats M, Zwertvaegher A, Gelorini V, De Smedt P, Chu W, Antrop M, De Maeyer P, Finke P, et al. 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology. 186:39–49. doi: 10.1016/j.geomorph.2012.12.015.
  • Dhar O, Nandargi S. 2003. Hydrometeorological aspects of floods in India. Nat Hazards. 28(1):1–33. doi: 10.1023/A:1021199714487.
  • Di Baldassarre G, Montanari A, Lins HF, Koutsoyiannis D, Brandimarte L, Blöschl G. 2010. Flood fatalities in Africa: from diagnosis to mitigation. Geophys Res Lett. 37(22):L22402. doi: 10.1029/2010GL045467.
  • Disaster Management Department, Government of West Bengal. 2018. District disaster management plan of Malda. WBDMD; [accessed 2019]. http://wbdmd.gov.in/Pages/District_DM_Plan.aspx.
  • Disaster Management Department, Government of West Bengal. 2016. District disaster management plan of Malda. WBDMD; [accessed 2017 Sep 1]. http://wbdmd.gov.in/Pages/District_DM_Plan.aspx.
  • Disaster Management Department, Government of West Bengal. 2019–2020. District disaster management plan of Maldah. WBDMD; [accessed 2020 Feb]. http://wbdmd.gov.in/Pages/District_DM_Plan.aspx.
  • District Census Handbook of Maldah District (DCHM), Census of India. 2011. West Bengal. https://www.censusindia.gov.in/2011census/dchb/WB.html.
  • Duan Y, Meng F, Liu T, Huang Y, Luo M, Xing W, De Maeyer P. 2019. Sub-daily simulation of mountain flood processes based on the modified soil water assessment tool (SWAT) model. IJERPH. 16(17):3118. doi: 10.3390/ijerph16173118.
  • Edamo ML, Ukumo TY, Lohani TK, Ayana MT, Ayele MA, Mada ZM, Abdi DM. 2022. A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environ Chall. 9:100629. doi: 10.1016/j.envc.2022.100629.
  • Edet A, Okereke C. 1997. Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban massif, southeastern Nigeria. J Appl Geophys. 36(4):195–204. doi: 10.1016/s0926-9851(96)00049-3.
  • Eingrüber N, Korres W. 2022. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Sci Total Environ. 838(Pt 1):155775. doi: 10.1016/j.scitotenv.2022.155775.
  • Elewa HH, Qaddah AA. 2011. Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modelling. Hydrogeol J. 19(3):613–628. doi: 10.1007/s10040-011-0703-8.
  • Elong A, Zhou L, Karney BW, Fang H, Cao Y, Assam SLZ. 2022. Flood prediction with two-dimensional shallow water equations: a case study of Tongo-Bassa Watershed in Cameroon. Appl Sci. 12(22):11622. doi: 10.3390/app122211622.
  • Feby B, Achu AL, Jimnisha K, Ayisha VA, Reghunath R. 2020. Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: a study from Southern Western Ghats, India. Remote Sens Appl: Soc Environ. 20:100411. doi: 10.1016/j.rsase.2020.100411.
  • Gauhar N, Das S, Moury K. 2021. Prediction of flood in Bangladesh using k-nearest neighbors algorithm. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). doi: 10.1109/ICREST51555.2021.9331199.
  • Fenta AA, Kifle A, Gebreyohannes T, Hailu G. 2014. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeol J. 23(1):195–206. doi: 10.1007/s10040-014-1198-x.
  • Getahun GY, Gebre SL. 2015. Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS model. J Civ Environ Eng. 05(04):1–12. doi: 10.4172/2165-784x.1000179.
  • Ghorabaee MK, Amiri M, Zavadskas EK, Turskis Z. 2017. Multi-criteria group decision-making using an extended edas method with interval type-2 fuzzy sets. E + M. 20(1):48–68. doi: 10.15240/tul/001/2017-1-004.
  • Ghosh A, Kar SK. 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Nat Hazards. 94(1):349–368. doi: 10.1007/s11069-018-3392-y.
  • Ghosh S, Saha S, Bera B. 2022. Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Nat Hazards Res. 2(4):363–374. doi: 10.1016/j.nhres.2022.06.003.
  • Gigović L, Pamučar D, Bajić Z, Drobnjak S. 2017. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water. 9(6):360. doi: 10.3390/w9060360.
  • Golkarian A, Naghibi SA, Kalantar B, Pradhan B. 2018. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess. 190:1–16. doi: 10.1007/s10661-018-6507-8.
  • Grillakis MG, Tsanis IK, Koutroulis AG. 2010. Application of the HBV hydrological model in a flash flood case in Slovenia. Nat Hazards Earth Syst Sci. 10(12):2713–2725. doi: 10.5194/nhess-10-2713-2010.
  • Habibi A, Delavar MR, Sadeghian MS, Nazari B. 2023. Flood susceptibility mapping and assessment using regularized random forest and Naïve Bayes algorithms. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. X-4/W1-2022:241–248. doi: 10.5194/isprs-annals-X-4-W1-2022-241-2023.
  • Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M. 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci. 12:1–16. doi: 10.1007/s12517-019-4754-9.
  • Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 143(1):29–36. doi: 10.1148/radiology.143.1.7063747.
  • Hasanloo M, Pahlavani P, Bigdeli B. 2019. Flood risk zonation using a multi-criteria spatial group fuzzy-AHP decision making and fuzzy overlay analysis. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-4/W18:455–460. doi: 10.5194/isprs-archives-XLII-4-W18-455-2019.
  • Hasanuzzaman M, Adhikary PP, Bera B, Shit PK. 2022. Flood vulnerability assessment using AHP and frequency ratio techniques. In: Pradhan B, Shit PK, Bhunia GS, Adhikary PP, Pourghasemi HR, editors. Spatial modelling of flood risk and flood hazards. GIScience and geo-environmental modelling. Cham: Springer EBooks; p. 91–104. doi: 10.1007/978-3-030-94544-2_6.
  • Hasanuzzaman M, Islam A, Bera B, Shit PK. 2022. A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India). Phys Chem Earth Parts a/B/C. 127:103198. doi: 10.1016/j.pce.2022.103198.
  • Hasanuzzaman M, Shit PK, Bera B, Islam A. 2023. Characterizing recurrent flood hazards in the Himalayan foothill region through data-driven modelling. Adv Space Res. 71(12):5311–5326. doi: 10.1016/j.asr.2023.02.028.
  • Hemmati M, Ellingwood BR, Mahmoud H. 2020. The role of urban growth in resilience of communities under flood risk. Earth’s Future. 8(3):e2019EF001382. doi: 10.1029/2019ef001382.
  • Hidayah E, Halik G, Indarto I, Khaulan DW. 2022. Flood hazard mapping of the Welang river, Pasuruan, East Java, Indonesia. J Appl Water Eng Res. 11(3):333–344. doi: 10.1080/23249676.2022.2114025.
  • Hidayah E, Halik G, Widiarti WY. 2022. Assessment of the conditioning factor for flash flood susceptibility potential based on bivariate statistical approach in the Wonoboyo Watershed in East Java. Indonesia. In Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering ; pp. 553 – 573). doi: 10.1007/978-981-16-9348-9_49.
  • Hidayah, E., Indarto, I., Lee, W., Halik, G., & Pradhan, B. (2022). Assessing coastal flood susceptibility in East Java, Indonesia: comparison of statistical bivariate and machine learning techniques. Water, 14(23), 3869. doi: 10.3390/w14233869.
  • Hidayah E, Widiarti WY, Putra PP, Dewantie AA, Alhamda MZ, Prastika H. 2021. Evaluation of hydrologic modelling using satellite product, and MMR rainfall in East Java, Indonesia. J Ecol Eng. 22(11):246–260. doi: 10.12911/22998993/142843.
  • Hoque M, Tasfia S, Ahmed N, Pradhan B. 2019. Assessing spatial flood vulnerability at Kalapara Upazila in Bangladesh using an analytic hierarchy process. Sensors (Basel). 19(6):1302. doi: 10.3390/s19061302.
  • Horton RE. 1932. Drainage basin characteristics. Trans Am Geophys Union. 14:350–361. doi: 10.1029/TR013i001p00350.
  • Huang W, Cao Z, Huang M, Duan W, Ni Y, Yang W. 2019. A new flash flood warning scheme based on hydrodynamic modelling. Water. 11(6):1221. doi: 10.3390/w11061221.
  • Hussain M, Tayyab M, Ullah K, Ullah S, Rahman ZU, Zhang J, Al-Shaibah B. 2023. Development of a new integrated flood resilience model using machine learning with GIS-based multi-criteria decision analysis. Urban Clim. 50:101589. doi: 10.1016/j.uclim.2023.101589.
  • Islam MR, Raja DR. 2021. Waterlogging risk assessment: an undervalued disaster risk in coastal urban community of Chattogram, Bangladesh. Earth. 2(1):151–173. doi: 10.3390/earth2010010.
  • Jahangir MH, Reineh SMM, Abolghasemi M. 2019. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim Extremes. 25:100215. doi: 10.1016/j.wace.2019.100215.
  • Jasrotia AS, Kumar R, Saraf AK. 2007. Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. Int J Remote Sens. 28(22):5019–5036. doi: 10.1080/01431160701264276.
  • Jenifer MA, Jha MK. 2017. Comparison of analytic hierarchy process, catastrophe and entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. J Hydrol. 548:605–624. doi: 10.1016/j.jhydrol.2017.03.023.
  • Jenness J, Brost B, Beier P. 2013. Land facet corridor designer. USDA Forest Service Rocky Mountain Research Station, 1–110. https://corridordesign.org.
  • Jesna I, Bhallamudi SM, Sudheer KP. 2023. Impact of cross‐sectional orientation in one‐dimensional hydrodynamic modeling on flood inundation mapping. J Flood Risk Manage. 16(3):e12893. doi: 10.1111/jfr3.12893.
  • Jha MK, Chowdary VM, Chowdhury A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J. 18(7):1713–1728. doi: 10.1007/s10040-010-0631-z.
  • Kafle MR, Shakya NM. 2018. Multi-criteria decision making approach for flood risk and sediment management in Koshi Alluvial Fan, Nepal. JWARP. 10(06):596–619. doi: 10.4236/jwarp.2018.106034.
  • Karande P, Chakraborty S. 2012. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Mater Des. 37:317–324. doi: 10.1016/j.matdes.2012.01.013.
  • Kazakis N, Kougias I, Patsialis T. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope–Evros region, Greece. Sci Total Environ. 538:555–563. doi: 10.1016/j.scitotenv.2015.08.055.
  • Keshavarz Ghorabaee M, Amiri M, Zavadskas EK, Turskis Z, Antucheviciene J. 2017. A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Comput Ind Eng. 112:156–174. doi: 10.1016/j.cie.2017.08.017.
  • Khiavi AN, Vafakhah M, Sadeghi SH. 2023. Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach. Stoch Environ Res Risk Assess. 37(7):2757–2775. doi: 10.1007/s00477-023-02417-0.
  • Kohansarbaz A, Kohansarbaz A, Shabanlou S, Yosefvand F, Rajabi A. 2022. Modelling flood susceptibility in northern Iran: application of five well‐known machine‐learning models. Irrig Drain. 71(5):1332–1350. doi: 10.1002/ird.2745.
  • Kourgialas NN, Karatzas GP. 2011. Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol Sci J. 56(2):212–225. doi: 10.1080/02626667.2011.555836.
  • Kulkarni N, Shete VV. 2014. Hybrid neuro-fuzzy approach for flood prediction and Dam gate control. International Conference on Information Society. doi: 10.1109/i-society.2014.7009044.
  • Kumar N, Liu XL, Narayanasamydamodaran S, Pandey KK. 2021. A Systematic review comparing urban flood management practices in India to China’s Sponge City program. Sustainability. 13(11):6346. doi: 10.3390/su13116346.
  • Lee S, Kim JC, Jung HS, Lee MJ, Lee S. 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Hazards Risk. 8(2):1185–1203. doi: 10.1080/19475705.2017.1308971.
  • Liu YW, De Smedt F. 2005. Flood modeling for complex terrain using GIS and remote sensed information. Water Resour Manage. 19(5):605–624. doi: 10.1007/s11269-005-6808-x.
  • Liu J, Shao W, Xiang C, Mei C, Li Z. 2020. Uncertainties of urban flood modeling: influence of parameters for different underlying surfaces. Environ Res. 182:108929. doi: 10.1016/j.envres.2019.108929.
  • Lodwick WA, Monson W, Svoboda L. 1990. Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Int J Geogr Inf Syst. 4(4):413–428. doi: 10.1080/02693799008941556.
  • Magesh N, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 3(2):189–196. doi: 10.1016/j.gsf.2011.10.007.
  • Mahmoud SH, Gan TY. 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Cleaner Prod. 196:216–229. doi: 10.1016/j.jclepro.2018.06.047.
  • Mahmoud SH, Gan TY. 2018. Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping. Sci Total Environ. 636:152–167. doi: 10.1016/j.scitotenv.2018.04.282.
  • Maiti PK, Mandal S. 2019. Majority of actinobacterial strains isolated from Kashmir Himalaya soil are rich source of antimicrobials and industrially important biomolecules. AiM. 09(03):220–238. doi: 10.4236/aim.2019.93016.
  • Maity DK, Mandal S. 2017. Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach. Environ Dev Sustain. 21(2):1013–1034. doi: 10.1007/s10668-017-0072-0.
  • Malik S, Pal SC, Chowdhuri I, Chakrabortty R, Roy P, Das B. 2020. Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sens Appl: Soc Environ. 19:100343. doi: 10.1016/j.rsase.2020.100343.
  • Mehebub S, Raihan A, Nuhul H, Haroon S. 2015. Assessing flood inundation extent and landscape vulnerability to flood using geospatial technology: A study of Malda district of West Bengal, India. fg. XIV(2):156–163. doi: 10.5775/fg.2067-4635.2015.144.d.
  • Meyer V, Kuhlicke C, Luther J, Fuchs S, Priest SJ, Dorner W, Serrhini K, Pardoe J, McCarthy S, Seidel J, et al. 2012. Recommendations for the user-specific enhancement of flood maps. Nat Hazards Earth Syst Sci. 12(5):1701–1716. doi: 10.5194/nhess-12-1701-2012.
  • Miller AJ. 1990. Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surf Processes Landf. 15(2):119–134. doi: 10.1002/esp.3290150203.
  • Ministry Home Affairs, Annual Report 2019-20. 2020. Ministry of Home Affairs, Government Of India; [accessed 2022 Feb 20]. https://www.mha.gov.in/sites/default/files/AnnualReport_19_20.pdf.
  • Ministry Home Affairs, Annual Report 2021-22. 2022. Ministry of Home Affairs, Government Of India; [accessed 2022 Feb 20]. https://www.mha.gov.in/sites/default/files/AnnualReport202122_24112022%5B1%5D.pdf.
  • Mishra K, Sinha R. 2020. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: a hydro-geomorphic approach. Geomorphology. 350:106861. doi: 10.1016/j.geomorph.2019.106861.
  • Mitra R, Das J. 2022. A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environ Sci Pollut Res. 30:16036–16067. doi: 10.21203/rs.3.rs-1710264/v1.
  • Mitra RK, Saha P, Das J. 2022. Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomat Nat Hazards Risk. 13(1):2183–2226. doi: 10.1080/19475705.2022.2112094.
  • Moayedi H, Canatalay PJ, Dehrashid AA, Cifci MA, Salari M, Le BN. 2023. Multilayer perceptron and their comparison with two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and backtracking search algorithm (BSA) for assessment of landslide susceptibility. Land. 12(1):242. doi: 10.3390/land12010242.
  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali AHB. 2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Hazards Risk. 8(2):1080–1102. doi: 10.1080/19475705.2017.1294113.
  • Mondal K, Bandyopadhyay S, Karmakar S. 2023. Framework for global sensitivity analysis in a complex 1D-2D coupled hydrodynamic model: highlighting its importance on flood management over large data-scarce regions. J Environ Manage. 332:117312. doi: 10.1016/j.jenvman.2023.117312.
  • Mondal NC, Das SN, Singh VS. 2008. Integrated approach for identification of potential groundwater zones in Seethanagaram Mandal of Vizianagaram District, Andhra Pradesh, India. J Earth Syst Sci. 117(2):133–144. doi: 10.1007/s12040-008-0004-3.
  • Moore ID, Hutchinson MF. 1990. Spatial extension of hydrologic process modelling.
  • Mosavi A, Ozturk P, Chau KW. 2018. Flood prediction using machine learning models: literature review. Water. 10(11):1536. doi: 10.3390/w10111536.
  • Msabi MM, Makonyo M. 2021. Flood susceptibility mapping using GIS and multi-criteria decision analysis: a case of Dodoma region, central Tanzania. Remote Sens Appl: Soc Environ. 21:100445. doi: 10.1016/j.rsase.2020.100445.
  • Mukherjee K, Pal S. 2017. Channel migration zone mapping of the River Ganga in the Diara surrounding region of Eastern India. Environ Dev Sustain. 20(5):2181–2203. doi: 10.1007/s10668-017-9984-y.
  • Mukherjee I, Singh UK. 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena. 194:104681. doi: 10.1016/j.catena.2020.104681.
  • Muralitharan J, Palanivel K. 2015. Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Sci Inform. 8(4):827–842. doi: 10.1007/s12145-015-0213-7.
  • Naghibi SA, Pourghasemi HR, Abbaspour K. 2017. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor Appl Climatol. 131(3-4):967–984. doi: 10.1007/s00704-016-2022-4.
  • Napolitano P, Fabbri AG. 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publ Ser Proc Rep Intern Assoc Hydrol Sci. 235(235):559–566.
  • Napolitano P, Fabbri AG. 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. Application of Geographic Information Systems in Hydrology and Water Resources Management. (Proceedings of the Vienna Conference, April 1996). IAHS Publ. no. 235 April 1996 ; p. 559–566.
  • Nath SK, Roy D, Singh Thingbaijam KK. 2008. Disaster mitigation and management for West Bengal, India—an appraisal. Curr Sci. 94(7):858–866.
  • Noymanee J, Theeramunkong T. 2019. Flood forecasting with machine learning technique on hydrological modeling. Procedia Comput Sci. 156:377–386. doi: 10.1016/j.procs.2019.08.214.
  • Oeurng C, Sauvage S, Sánchez-Pérez J. 2011. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J Hydrol. 401(3-4):145–153. doi: 10.1016/j.jhydrol.2011.02.017.
  • Olbert AI, Moradian S, Nash S, Comer J, Kazmierczak B, Falconer RA, Hartnett M. 2023. Combined statistical and hydrodynamic modelling of compound flooding in coastal areas - methodology and application. J Hydrol. 620:129383. doi: 10.1016/j.jhydrol.2023.129383.
  • Ouma Y, Tateishi R. 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water. 6(6):1515–1545. doi: 10.3390/w6061515.
  • Özay B, Orhan O. 2023. Flood susceptibility mapping by best–worst and logistic regression methods in Mersin, Turkey. Environ Sci Pollut Res Int. 30(15):45151–45170. doi: 10.1007/s11356-023-25423-9.
  • Ozdemir A. 2011. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol. 411(3-4):290–308. doi: 10.1016/j.jhydrol.2011.10.010.
  • Pamučar D, Ćirović G. 2015. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC). Expert Syst Appl. 42(6):3016–3028. doi: 10.1016/j.eswa.2014.11.057.
  • Pandey AC, Kaushik K, Parida BR. 2022. Google earth engine for large-scale flood mapping using SAR data and impact assessment on agriculture and population of Ganga-Brahmaputra Basin. Sustainability. 14(7):4210. doi: 10.3390/su14074210.
  • Patel D, Parekh F, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Samiala. 2014. Flood forecasting using adaptive neuro-fuzzy inference system (ANFIS). IJETT. 12(10):510–514. doi: 10.14445/22315381/IJETT-V12P295.
  • Paul BK, Mahmood S. 2016. Selected physical parameters as determinants of flood fatalities in Bangladesh, 1972–2013. Nat Hazards. 83:1703–1715. doi: 10.1007/s11069-016-2384-z.
  • Paul P, Sarkar R. 2022. Flood susceptible surface detection using geospatial multi-criteria framework for management practices. Nat Hazards. 114(3):3015–3041. doi: 10.1007/s11069-022-05503-8.
  • Pei H, Zhang G, Ge J, Wang J, Ding B, Liu X. 2010. Investigation of polymer-enhanced foam flooding with low gas/liquid ratio for improving heavy oil recovery. Canadian Unconventional Resources and International Petroleum Conference, Oct 19–21; Calgary. p. 1–11. doi: 10.2118/137171-MS.
  • Petrucci O. 2022. Review article: factors leading to the occurrence of flood fatalities: a systematic review of research papers published between 2010 and 2020. Nat Hazards Earth Syst Sci. 22(1):71–83. doi: 10.5194/nhess-22-71-2022.
  • Pham BT, Luu C, Phong TV, Nguyen HD, Le HV, Tran AQ, Ta HT, Prakash I. 2021. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. J Hydrol. 592:125815. doi: 10.1016/j.jhydrol.2020.125815.
  • Pham BT, Phong TV, Nguyen HD, Qi C, Al-Ansari N, Amini A, Ho LS, Tuyen TT, Yen HPH, Ly H-B, et al. 2020. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water. 12(1):239. doi: 10.3390/w12010239.
  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards. 69(1):749–779. doi: 10.1007/s11069-013-0728-5.
  • Pradhan B. 2009. Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Open Geosci. 1(1):120–129. doi: 10.2478/v10085-009-0008-5.
  • Rahmati, Darabi, Haghighi, Stefanidis, Kornejady, Nalivan, Bui, (2019). Urban flood hazard modeling using self-organizing map neural network. Water, 11(11), 2370. doi: 10.3390/w11112370.
  • Rahmati O, Kornejady A, Samadi M, Nobre AD, Melesse AM. 2018. Development of an automated GIS tool for reproducing the HAND terrain model. Environ Modell Softw. 102:1–12. doi: 10.1016/j.envsoft.2018.01.004.
  • Rahmati O, Melesse AM. 2016. Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci Total Environ. 568:1110–1123. doi: 10.1016/j.scitotenv.2016.06.176.
  • Rahmati O, Nazari Samani A, Mahdavi M, Pourghasemi HR, Zeinivand H. 2014. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8(9):7059–7071. doi: 10.1007/s12517-014-1668-4.
  • Rousseau M, Cerdan O, Delestre O, Dupros F, James F, Cordier S. 2015. Overland flow modeling with the shallow water equations using a well-balanced numerical scheme: better predictions or just more complexity. J Hydrol Eng. 20(10):04015012. doi: 10.1061/(asce)he.1943-5584.0001171.
  • Roy S, Bose A, Chowdhury IR. 2021. Flood risk assessment using geospatial data and multi-criteria decision approach: a study from historically active flood-prone region of Himalayan foothill, India. Arab J Geosci. 14(11):999. doi: 10.1007/s12517-021-07324-8.
  • Saaty TL. 1980. The analytical hierarchy process, planning, priority. Pittsburgh: RWSpublications.
  • Saaty TL. 1990. Eigenvector and logarithmic least squares. Eur J Oper Res. 48(1):156–160. doi: 10.1016/0377-2217(90)90073-K.
  • Saaty RW. 1987. The analytic hierarchy processd what it is and how it is used. Math Modell. 9(3-5):161–176. doi: 10.1016/0270-0255(87)90473-8.
  • Saaty TL. 1977. A scaling method for priorities in hierarchical structures. J Math Psychol. 15(3):234–281. doi: 10.1016/0022-2496(77)90033-5.
  • Saaty TL. 1980. The analytical hierarchy process. New York, NY: McGraw-Hill
  • Saaty TL. 1990. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 48(1):9–26. doi: 10.1016/0377-2217(90)90057-I.
  • Saaty TL. 2006. Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur J Oper Res. 168(2):557–570. doi: 10.1016/j.ejor.2004.04.032.
  • Saaty TL, Vargas LG. 1991. Prediction, projection and forecasting: applications of the analytichierarchy process in economics, finance, politics, games and sports. Boston: kluweracademic Publishers; p. 11–31.
  • Sachdeva S, Kumar B. 2022. Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods. Ecol Inf. 67:101498. doi: 10.1016/j.ecoinf.2021.101498.
  • Saha S. 2017. Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spat Inf Res. 25(4):615–626. doi: 10.1007/s41324-017-0127-1.
  • Sahoo S, Munusamy SB, Dhar A, Kar A, Ram P. 2017. Appraising the accuracy of multi-class frequency ratio and weights of evidence method for delineation of regional groundwater potential zones in canal command system. Water Resour Manage. 31(14):4399–4413. doi: 10.1007/s11269-017-1754-y.
  • Sahoo A, Samantaray S, Bankuru S, Ghose DK. 2020. Prediction of flood using adaptive neuro-fuzzy inference systems: a case study. Smart Innov Syst Technol. 1:733–739. doi: 10.1007/978-981-13-9282-5_70.
  • Sahraei S, Asadzadeh M, Unduche F. 2020. Signature-based multi-modelling and multi-objective calibration of hydrologic models: application in flood forecasting for Canadian Prairies. J Hydrol. 588:125095. doi: 10.1016/j.jhydrol.2020.125095.
  • Saikh NI, Mondal P. 2023. Gis-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Nat Hazards Res. 3(3):420–436. doi: 10.1016/j.nhres.2023.05.004.
  • Salazar-Briones C, Ruiz-Gibert JM, Lomelí-Banda MA, Mungaray-Moctezuma A. 2020. An integrated urban flood vulnerability index for sustainable planning in arid zones of developing countries. Water. 12(2):608. doi: 10.3390/w12020608.
  • Samanta RK, Bhunia GS, Shit PK, Pourghasemi HR. 2018. Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. Model Earth Syst Environ. 4(1):395–408. doi: 10.1007/s40808-018-0427-z.
  • Sami SB, Siddiqi TA, Iqbal M. 2019. A neuro-fuzzy modeling for the hydrological time series of floods of river Indus of Pakistan. IJH. 3(2):138–147. doi: 10.15406/ijh.2019.03.00175.
  • Sar N, Chatterjee S, Das Adhikari M. 2015. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model Earth Syst Environ. 1:1–21. doi: 10.1007/s40808-015-0039-9.
  • Sari F. 2021. Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: a comparative analysis of VIKOR and TOPSIS. For Ecol Manage. 480:118644. doi: 10.1016/j.foreco.2020.118644.
  • Sarkar D, Mondal P. 2020. Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Appl Water Sci. 10(1):1–13. doi: 10.1007/s13201-019-1102-x.
  • Seejata K, Yodying A, Wongthadam T, Mahavik N, Tantanee S. 2018. Assessment of flood hazard areas using analytical hierarchy process over the Lower Yom Basin, Sukhothai Province. Procedia Eng. 212:340–347. doi: 10.1016/j.proeng.2018.01.044.
  • Senanayake I, Dissanayake D, Mayadunna B, Weerasekera W. 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci Front. 7(1):115–124. doi: 10.1016/j.gsf.2015.03.002.
  • Sener S, Sener E, Karagüzel R. 2010. Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent–Uluborlu (Isparta) Basin, Turkey. Environ Monit Assess. 173(1-4):533–554. doi: 10.1007/s10661-010-1403-x.
  • Shafapour Tehrany M, Kumar L, Shabani F. 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia. PeerJ. 7:e7653. doi: 10.7717/peerj.7653.
  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, et al. 2020. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens. 12(2):266. doi: 10.3390/rs12020266.
  • Sharir K, Rodeano R, Mariappan S. 2019. Flood susceptibility analysis (FSA) using analytical hierarchy process (AHP) model at the Kg. Kolopis area, Penampang, Sabah, Malaysia. J Phys: Conf Ser. 1358(1):012065. doi: 10.1088/1742-6596/1358/1/012065.
  • Sharma SK, Kwak Y, Kumar R, Sarma B. 2018. Analysis of hydrological sensitivity for flood risk assessment. IJGI. 7(2):51. doi: 10.3390/ijgi7020051.
  • Slater L, Villarini G, Archfield SA, Faulkner DR, Lamb RN, Khouakhi A, Yin JH. 2021. Global changes in 20‐year, 50‐year, and 100‐year river floods. Geophys Res Lett. 48(6):e2020GL091824. doi: 10.1029/2020GL091824.
  • Solaimani K, Shokrian F, Darvishi S. 2022. An assessment of the integrated multi-criteria and new models efficiency in watershed flood mapping. Water Resour Manage. 37(1):403–425. doi: 10.1007/s11269-022-03380-1.
  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M. 2019. GIS-based MCDM – AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 35(9):991–1017. doi: 10.1080/10106049.2019.1566405.
  • Stillwell WG, Seaver DA, Edwards W. 1981. A comparison of weight approximation techniques in multiattribute utility decision making. Organizational Behavior and Human Performance. 28(1):62–77. doi: 10.1016/0030-5073(81)90015-5.
  • Subrahmanyam VP. 1988. Hazards of floods and droughts in India. Springer eBooks. Netherlands: Springer. p. 337–356. doi: 10.1007/978-94-009-1433-9_24.
  • Swain KC, Singha C, Nayak L. 2020. Flood susceptibility mapping through the GIS-AHP technique using the cloud. IJGI. 9(12):720. doi: 10.3390/ijgi9120720.
  • Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857):1285–1293. doi: 10.1126/science.3287615.
  • Tamiru H, Dinka MO. 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. J Hydrol: Reg Stud. 36:100855. doi: 10.1016/j.ejrh.2021.100855.
  • Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: a comparison between different factor discretization methods. Catena. 190:104536. doi: 10.1016/j.catena.2020.104536.
  • Taromideh F, Fazloula R, Choubin B, Emadi A, Berndtsson R. 2022. Urban flood-risk assessment: integration of decision-making and machine learning. Sustainability. 14(8):4483. doi: 10.3390/su14084483.
  • Tayyab M, Zhang J, Hussain M, Ullah S, Liu X, Khan SN, Baig MA, Hassan W, Al-Shaibah B. 2021. GIS-based urban flood resilience assessment using urban flood resilience model: a case study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sensing. 13(10):1864. doi: 10.3390/rs13101864.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343. doi: 10.1016/j.jhydrol.2014.03.008.
  • Tehrany MS, Shabani F, Jebur MN, Hong H, Chen W, Xie X. 2017. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat Nat Hazards Risk. 8(2):1538–1561. doi: 10.1080/19475705.2017.1362038.
  • Thakkar JJ. 2021. VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Multi-Crit Decis Making. 129–138. doi: 10.1007/978-981-33-4745-8_8.
  • Thapa R, Gupta S, Guin S, Kaur H. 2018. Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: a comparative approach between vulnerability models. Water Sci. 32(1):44–66. doi: 10.1016/j.wsj.2018.02.003.
  • Radwan F, Alazba AA, Mossad A. 2018. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 67(1):215–229. doi: 10.1007/s11600-018-0233-z.
  • Ullah K, Wang Y, Fang Z, Wang L, Rahman MTA. 2022. Multi-hazard susceptibility mapping based on convolutional neural networks. Geosci Front. 13(5):101425. doi: 10.1016/j.gsf.2022.101425.
  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075. doi: 10.1016/j.gsf.2020.09.006.
  • Ullah K, Zhang J. 2020. GIS-based flood hazard mapping using relative frequency ratio method: a case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS One. 15(3):e0229153. doi: 10.1371/journal.pone.0229153.
  • Vafakhah M, Mohammad Hasani Loor S, Pourghasemi H, Katebikord A. 2020. Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arab J Geosci. 13(11):1–16. doi: 10.1007/s12517-020-05363-1.
  • Vargas LG. 1990. An overview of the analytic hierarchy process and its applications. Eur J Oper Res. 48(1):2–8. doi: 10.1016/0377-2217(90)90056-H.
  • Vijith H, Dodge-Wan D. 2019. Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo. Environ Monit Assess. 191(8):494. doi: 10.1007/s10661-019-7604-z.
  • Vishnu C, Sajinkumar K, Oommen T, Coffman RA, Thrivikramji KP, Rani VR, Keerthy S. 2019. Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomat Nat Hazards Risk. 10(1):758–767. doi: 10.1080/19475705.2018.1543212.
  • Wang J, Liu J, Mei C, Wang H, Lu J. 2022. A multi-objective optimization model for synergistic effect analysis of integrated green-gray-blue drainage system in urban inundation control. J Hydrol. 609:127725. doi: 10.1016/j.jhydrol.2022.127725.
  • Wang, Thanh, Chyou, Lin, Nguyen, (2019). Fuzzy multicriteria decision-making model (MCDM) for raw materials supplier selection in plastics industry. Mathematics, 7(10), 981. doi: 10.3390/math7100981.
  • Wassenaar HJ, Chen W. 2003. An approach to decision-based design with discrete choice analysis for demand modeling. J Mech Des. 125(3):490–497. doi: 10.1115/1.1587156.
  • Weiss A. 2001. Topographic position and landforms analysis. In Poster presentation, ESRI user conference, San Diego, CA (Vol. 200)
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033. doi: 10.1080/01431160600589179.
  • Xu C, Zhong P, Zhu F, Li L, Lu Q, Yang L. 2023. Stochastic multi-criteria decision making framework based on SMAA-VIKOR for reservoir flood control operation. Hydrol Sci J J Des Sci Hydrolo. 68(6):886–901. doi: 10.1080/02626667.2022.2154161.
  • Yin H, Shi Y, Niu H, Xie D, Wei J, Lefticariu L, Xu S. 2018. A GIS-based model of potential groundwater yield zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China. J Hydrol. 557:434–447. doi: 10.1016/j.jhydrol.2017.12.043.
  • Yougbaré JW. 2019. The ranking of districts in Ouagadougou by the risk of flood and runoff using the PROMETHEE. Eur J Pure Appl Math. 12(4):1731–1743. doi: 10.29020/nybg.ejpam.v12i4.3562.
  • Zeng J, Huang G. 2017. Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight. Hydrol Res. 49(4):1143–1155. doi: 10.2166/nh.2017.265.