586
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new method for orthographic video map construction based on video and GIS

, , , &
Article: 2289450 | Received 10 Aug 2023, Accepted 26 Nov 2023, Published online: 29 Dec 2023

References

  • Arjovsky M, Chintala S, Bottou L. 2017. Wasserstein GAN. Proceedings of the 36th International Conference on Machine Learning (ICML). p. 214–223. doi: 10.48550/arXiv.1701.07875.
  • Badrinarayanan V, Kendall A, Cipolla R. 2017. Segnet: a deep convolutional encoder-decoder architecture for image seg-mentation. IEEE Trans Pattern Anal Mach Intell. 39(12):2481–2495. doi: 10.1109/TPAMI.2016.2644615.
  • Betti A, Tucci M. 2023. YOLO-S: a lightweight and accurate YOLO-like network for small target detection in aerial imagery. Sensors. 23(4):1865. doi: 10.3390/s23041865.
  • Bouwmans T. 2014. Traditional and recent approaches in background modeling for foreground detection: an overview. Comp Sci Rev. 11:31–66. doi: 10.1016/j.cosrev.2014.04.001.
  • Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. 2020. End-to-end object detection with transformers. European conference on computer vision. Cham: Springer International Publishing; p. 213–229. doi: 10.48550/arXiv.2005.12872.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2017. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848. doi: 10.1109/TPAMI.2017.2699184.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2016. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. PAMI. 2016:834–848. doi: 10.48550/arXiv.1606.00915.
  • Chen LC, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic image segmentation. arXiv. doi: 10.48550/arXiv.1706.05587.
  • Chen LC, Zhu YK, Papandreou G, Schroff F, Adam H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. ECCV. 2018:833–851. doi: 10.48550/arXiv.1802.02611.
  • Dalal N, Triggs B. 2005. Histograms of oriented gradients for human detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA: IEEE; p. 886–893. doi: 10.1109/CVPR.2005.177.
  • Dosovitskiy A, Beyer L, Kolesnikov A, et al. 2020. An image is worth 16x16 words: transformers for image recognition at scale. arXiv Preprint. arXiv 2010119292020. doi: 10.48550/arXiv.2010.11929.
  • Girshick R, Donahue J, Darrell T. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA: IEEE; p. 80–587. doi: 10.1109/CVPR.2014.81.
  • Girshick R. 2015. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 7–13 December 2015. Santiago, Chile: IEEE; p. S1440–S1448. doi: 10.1109/ICCV.2015.169.
  • Han SJ, Dong XR, Hao XY, Miao SF. 2022. Extracting objects’ spatial-temporal information based on surveillance videos and the digital surface model. IJGI. 11(2):103. doi: 10.3390/ijgi11020103.
  • Han Z, Cui C, Kong Y, Qin F, Fu P. 2016. Video data model and retrieval service framework using geographic information. Trans GIS. 20(5):701–717. 2016 doi: 10.1111/tgis.12175.
  • Han Z, Li S, Cui C, Han D, Song H. 2019. Geosocial media as a proxy for security: a review. IEEE Access. 7:154224–154238. doi: 10.1109/ACCESS.2019.2949115.
  • Kim K, Oh S, Lee J. 2009. Augmenting aerial earth maps with dynamic information. 8th IEEE International Symposium on Mixed & Augmented Reality (ISMAR). Orlando, FL, USA: IEEE: p. 35–38. doi: 10.1109/ISMAR.2009.5336505.
  • Lewis P, Fotheringham S, Winstanley A. 2011. Spatial video and GIS. Int J Geogr Inf Sci. 25(5):697–716. doi: 10.1080/13658816.2010.505196.
  • Liu W, Anguelov D, Erhan D. 2016. SSD: single shot multibox detector. European conference on computer vision. Cham, Switzerland: Springer International Publishing; p. 21–37. doi: 10.48550/arXiv.1512.02325.
  • Liu YF, Lu BH, Peng JY. 2020. Research on the use of YOLOv5 object detection algorithm in mask wearing recognition. World Sci Res J. 6(11):38. doi: 10.6911/WSRJ.202011_6(11).0038.
  • Lippman A. 1980. Movie-maps: an application of the optical videodisc to computer. SIGGRAPH Comput Graph. 14(3):32–42. doi: 10.1145/965105.807465.
  • Lipton AJ, Fujiyoshi H, Patil R S. 1998. Moving object classification and tracking from real-time video. WACV '98: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision, Princeton, NJ, USA: IEEE. doi: 10.1109/ACV.1998.732851.
  • Luo X, Wang Y, Dong J, Li Z, Yang Y, Tang K, Huang T. 2022. Complete trajectory extraction for moving objects in traffic scenes that considers multi-level semantic features. Int J Geogr Inf Sci. 37(4):913–937. doi: 10.1080/13658816.2022.2158190.
  • Luo X, Wang Y, Zhang X. 2023. A violation analysis method of traffic objects based on video and GIS. Geomat Inf Sci Wuhan Univ. 48(4):647–655. doi: 10.13203/j.whugis20200582.
  • Milosavljević A, Dimitrijević A, Rančić D. 2010. GIS-augmented video surveillance. Int J Geogr Inf Sci. 24(9):1415–1433. doi: 10.1080/13658811003792213.
  • Redmon J, Divvala S, Girshick R. 2016. You only look once: unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA: IEEE; p. 779–778. doi: 10.1109/CVPR.2016.91.
  • Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE; p. 6517–6525. doi: 10.48550/arXiv.1612.08242.
  • Redmon J, Farhadi A. 2018. YOLOV3: An incremental improvement. Computer vision and pattern recognition. Berlin/Heidelberg, Germany: Springer. 1804:1–6. doi: 10.48550/arXiv.1804.02767.
  • Ren S, He K, Girshick R, Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal net-works. IEEE Trans Pattern Anal Mach Intell. 39(6):1137–1149. doi: 10.1109/TPAMI.2016.2577031.
  • Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional Networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention; p. 234–241. doi: 10.48550/arXiv.1505.04597.
  • Sankaranarayanan K, Davis JW. 2008. A fast linear registration framework for multi-camera GIS coordination. In Proceedings of the fifth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2008, Santa Fe, NM, USA: IEEE. doi: 10.1109/AVSS.2008.20.
  • Sebe IO, Hu JH, You SY. 2003. 3D video surveillance with augmented virtual environments. In Proceedings of the First ACM SIGMM International Workshop on Video Surveillance, BerkeleyCAUSA. 2–8 November 2003; p. 107–112. doi: 10.1145/982452.982466.
  • Sobral A, Vacavant A. 2014. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. CVIU. 122:4–21. doi: 10.1016/j.cviu.2013.12.005.
  • Sun Y, Zhang X, Shi X, Li Q. 2022. Crowd density estimation method considering video geographic mapping. J Geo-Inf Sci. 24(6):1130–1138. doi: 10.12082/dqxxkx.2022.210555.
  • Viola P, Jones M. 2001. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA: IEEE; p. 511–518. doi: 10.1109/CVPR.2001.990517.
  • Xie Y, Wang M, Liu X, Wu Y. 2017. Integration of GIS and moving objects in surveillance video. IJGI. 6(4):94. doi: 10.3390/ijgi6040094.
  • Xu L, Jia JY, Matsushita Y. 2012. Motion detail preserving optical flow estimation. IEEE Trans Pattern Anal Mach Intell. 34(9):1744–1757. doi: 10.1109/TPAMI.2011.236.
  • Yoo HH, Kim SS. 2004. Construction of facilities management system combining video and geographical information. KSCE J Civ Eng. 8(4):435–442. doi: 10.1007/BF02829167.
  • Zhang X, Sun Y, Li Q, Li X, Shi X. 2023. Crowd density estimation and mapping method based on surveillance video and GIS. IJGI. 12(2):56. doi: 10.3390/ijgi12020056.
  • Zhang X, Zhou Y, Luo X, Shi X, Wu C. 2022. An indoor real-time map construction method based on collaboration of multiple cameras. Sci Surv Mapp. 47(1):188–195. doi: 10.16251/j.cnki.1009-2307.2022.01.022.
  • Zhang X, Shi X, Luo X, Sun Y, Zhou Y. 2021. Real-time web map construction based on multiple cameras and GIS. IJGI. 10(12):803. doi: 10.3390/ijgi10120803.
  • Zhang X, Liu X, Wang S, Liu Y. 2015. Mutual mapping between surveillance video and 2D geospatial data. Geomat Inf Sci. 40(8):1130–1136. doi: 10.13203/j.whugis20130817.
  • Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PHS. 2015. Conditional random fields as recurrent neural networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV). IEEE; p. 1529–1537. doi: 10.1109/ICCV.2015.179.