100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extracting multilane roads from OpenStreetMap through graph convolutional neural network and road mesh relationship analysis

, , , , &
Article: 2364682 | Received 04 Mar 2024, Accepted 31 May 2024, Published online: 24 Jun 2024

References

  • Ali Abbaspour R, Chehreghan A, Karimi A. 2018. Assessing the efficiency of shape-based functions and descriptors in multi-scale matching of linear objects. Geocarto Int. 33:879–892. doi: 10.1080/10106049.2017.1316777.
  • Basaraner M, Cetinkaya S. 2017. Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS. Int J Geogr Inf Sci. 31:1952–1977. doi: 10/ghz25g.
  • Burghardt D, Steiniger S. 2005. Usage of principle component analysis in the process of automated generalisation. In: Proceeding of the 22th International Cartographic Conference (ICC), p. 9–16.
  • Chehreghan A, Ali Abbaspour R. 2018. A geometric-based approach for road matching on multi-scale datasets using a genetic algorithm. Cartograph Geograph Inform Sci. 45(3):255–269. doi: 10.1080/15230406.2017.1324823.
  • Chen J, Hu Y, Li Z, Zhao R, Meng L. 2009. Selective omission of road features based on mesh density for automatic map generalization. Int J Geogr Inf Sci. 23:1013–1032. doi: 10.1080/13658810802070730.
  • Gong X, Wu F, Xing R, Du J, Liu C. 2021. LCBRG: a lane-level road cluster mining algorithm with bidirectional region growing. Open Geosci. 13:835–850. doi: 10.1515/geo-2020-0271.
  • Grigorescu I, Kucsicsa G, Mitrică B, Mocanu I, Dumitrașcu M. 2022. Driving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression. Geocarto Int. 37:7220–7246. doi: 10.1080/10106049.2021.1967465.
  • Gülgen F. 2014. Road hierarchy with integration of attributes using fuzzy-AHP. Geocarto Int. 29:688–708. doi: 10.1080/10106049.2013.837102.
  • Guo X, Liu J, Wu F, Qian H. 2023. A method for intelligent road network selection based on graph neural network. ISPRS International Journal of Geo-Information. 12(8):336. doi: 10.3390/ijgi12080336.
  • Guo Q, Xie Y, Liu J, Wang L, Zhou L. 2017. Algorithms for road networks matching considering scale variation and data update. Acta Geo Cartograph Sinica. 46(3):381–388. doi: 10.11947/j.AGCS.2017.20160364.
  • Heinzle F, Anders K-H, Sester M. 2006. Pattern recognition in road networks on the example of circular road detection. In Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. Geographic information science, lecture notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 153–167. doi: 10.1007/11863939_11.
  • Hong Y, Yao Y. 2019. Hierarchical community detection and functional area identification with OSM roads and complex graph theory. Int J Geogr Inf Sci. 33:1569–1587. doi: 10.1080/13658816.2019.1584806.
  • Hu Z, Jia T, Wang G, Wang J, Meng L. 2017. Computing a hierarchy favored optimal route in a Voronoi-based road network with multiple levels of detail. Int J Geogr Inf Sci. 31:2216–2233. doi: 10.1080/13658816.2017.1356460.
  • Jiang B. 2009. Street hierarchies: a minority of streets account for a majority of traffic flow. Int J Geogr Inf Sci. 23:1033–1048. doi: 10.1080/13658810802004648.
  • Kim I-H, Feng C-C, Wang Y-C. 2017. A simplified linear feature matching method using decision tree analysis, weighted linear directional mean, and topological relationships. Int J Geograph Inform Sci. 31:1042–1060. doi: 10.1080/13658816.2016.1267736.
  • Kipf TN, Welling M. 2017. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations (ICLR), p. 1–14. doi: 10.48550/arXiv.1609.02907.
  • Li Q, Fan H, Luan X, Yang B, Liu L. 2014. Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks. Int J Geogr Inf Sci. 28:2200–2219. doi: 10.1080/13658816.2014.915401.
  • Li Y, Fei T, Zhang F. 2019. A regionalization method for clustering and partitioning based on trajectories from NLP perspective. Int J Geogr Inf Sci. 33:2385–2405. doi: 10.1080/13658816.2019.1643025.
  • Liu C, Zhai R, Qian H, Gong X, Wang A, Wu F. 2023. Identification of drainage patterns using a graph convolutional neural network. Trans GIS. 27(3):752–776. doi: 10.1111/tgis.13041.
  • Liu K, Gao S, Lu F. 2019. Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling. Comput Environ Urban Syst. 74:50–61. doi: 10.1016/j.compenvurbsys.2018.12.001.
  • Mann D, Rankavat S, Joshi PK. 2022. Road network drives urban ecosystems - a longitudinal analysis of impact of roads in the central Himalaya. Geocarto Int. 37:1100–1125. doi: 10.1080/10106049.2020.1750064.
  • Martin K. 2024. Learning from Vector Data: Enhancing Vector-Based Shape Encoding and Shape Classification for Map Generalization Purposes. Cartography and Geographic Information Science. 51(1):146–167. doi: 10.1080/15230406.2023.2273397.
  • Peng H, Long F, Ding C. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence. 27(8):1226–1238. doi: 10.1109/TPAMI.2005.159.
  • Shoman W, Gülgen F. 2017. Centrality-based hierarchy for street network generalization in multi-resolution maps. Geocarto Int. 32:1352–1366. doi: 10.1080/10106049.2016.1208683.
  • Stefanakis E. 2015. SELF: semantically enriched line simplification. Int J Geogr Inf Sci. 29:1826–1844. doi: 10.1080/13658816.2015.1053092.
  • Thom S. 2002. A strategy for collapsing OS Integrated Transport NetworkTM dual carriageways. Presented at the 8th ICA workshop on generalisation and multiple representations, Leicester, UK.
  • Tong X, Liang D, Jin Y. 2014. A linear road object matching method for conflation based on optimization and logistic regression. Int J Geogr Inf Sci. 28:824–846. doi: 10.1080/13658816.2013.876501.
  • Touya G. 2010. A road network selection process based on data enrichment and structure detection: road network selection. Trans GIS. 14:595–614. doi: 10/d2vj6k.
  • Wang M, Ai T, Yan X, Xiao Y. 2020. Grid pattern recognition in road networks based on graph convolution network model. Geomat Inform Sci Wuhan Univ. 45(12):1960–1969. doi: 10.13203/j.whugis20200022.
  • Wang D, Qian H. 2023. Graph neural network method for the intelligent selection of river system. Geocarto International. 38(1):2252762. doi: 10.1080/10106049.2023.2252762.
  • Wang W, Yan H, Lu X, He Y, Liu T, Li W, Li P, Xu F. 2023. Drainage pattern recognition method considering local basin shape based on graph neural network. Int J Digital Earth. 16(1):593–619. doi: 10.1080/17538947.2023.2172224.
  • Wang X, Burghardt D. 2020. Using stroke and mesh to recognize building group patterns. Int J Cartogr. 6:71–98. doi: 10/gnpwzf.
  • Wang X, You S, Wang L. 2017. Classifying road network patterns using multinomial logit model. J Transp Geogr. 58:104–112. doi: 10.1016/j.jtrangeo.2016.11.013.
  • Wu K, Xie Z, Hu M. 2022. An unsupervised framework for extracting multilane roads from OpenStreetMap. Int J Geogr Inf Sci. 36:2322–2344. doi: 10.1080/13658816.2022.2107208.
  • Xing R, Wu F, Gong X, et al. 2021. The template matching approach to combined collinear pattern recognition in building groups. Acta Geodaet Cartograph Sinica, 50(6):800–811. doi: 10.11947/j.AGCS.2021.20200298.
  • Xing R, Wu F, Zhang H, Gong X. 2018. Dual-carriageway road extraction based on facing project distance. Geomat Inform Sci Wuhan Univ. 43(1):152–158. doi: 10.13203/j.whugis20150783.
  • Xu Y, Xie Z, Wu L, Chen Z. 2019. Multilane roads extracted from the OpenStreetMap urban road network using random forests. Trans GIS. 23:224–240. doi: 10.1111/tgis.12514.
  • Yan X, Ai T, Yang M, Tong X, Liu Q. 2020. A graph deep learning approach for urban building grouping. Geocarto Int. 37(10):2944–2966. doi: 10.1080/10106049.2020.1856195.
  • Yan X, Ai T, Yang M, Tong X. 2021. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. Int J Geogr Inf Sci. 35(3):490–512. doi: 10.1080/13658816.2020.1768260.
  • Yan X, Ai T, Yang M, Yin H. 2019. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS J Photogramm Remote Sens. 150:259–273. doi: 10.1016/j.isprsjprs.2019.02.010.
  • Yang B, Luan X, Li Q. 2011. Generating hierarchical strokes from urban street networks based on spatial pattern recognition. Int J Geogr Inf Sci. 25:2025–2050. doi: 10/bpwt3x.
  • Yang M, Jiang C, Yan X, Ai T, Cao M, Chen W. 2022. Detecting interchanges in road networks using a graph convolutional network approach. Int J Geogr Inf Sci. 36:1119–1139. doi: 10.1080/13658816.2021.2024195.
  • Yu H, Ai T, Yang M, Huang L, Yuan J. 2022. A recognition method for drainage patterns using a graph convolutional network. Int J Appl Earth Obs Geoinformation. 107:102696. doi: 10.1016/j.jag.2022.102696.
  • Yu H, Ai T, Yang M, Huang W, Harrie L. 2023. A graph autoencoder network to measure the geometric similarity of drainage networks in scaling transformation. Int J Digital Earth. 16(1):1828–1852. 10.1080/17538947.2023.2212920.
  • Yu W, Zhang Y, Ai T, Guan Q, Chen Z, Li H. 2020. Road network generalization considering traffic flow patterns. Int J Geogr Inf Sci. 34:119–149. doi: 10.1080/13658816.2019.1650936.
  • Zhang H, Wu F, Zhang J, Li J. 2016. A method considering shape feature and semantic information for dual-carriageway roads recognition. J Geomat Sci Technol. 33(3):301–305 + 312. doi: 10.3969/j.issn.1673-6338.2016.03.016.
  • Zhao R, Ai T, Yu W, He Y, Shen Y. 2020. Recognition of building group patterns using graph convolutional network. Cartograph Geograph Inform Sci. 47(5):400–417. doi: 10.1080/15230406.2020.1757512.
  • Zhou Q, Li Z. 2016. Empirical determination of geometric parameters for selective omission in a road network. Int J Geogr Inf Sci. 30:263–299. doi: 10.1080/13658816.2015.1085538.
  • Zhou Z, Fu C, Weibel R. 2023. Move and remove: multi-task learning for building simplification in vector maps with a graph convolutional neural network. ISPRS J Photogramm Remote Sens. 202:205–218. doi: 10.1016/j.isprsjprs.2023.06.004.