93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Monitoring land subsidence through improved CAESAR algorithm in time-series InSAR processing

, , &
Article: 2364689 | Received 24 Oct 2023, Accepted 31 May 2024, Published online: 24 Jun 2024

References

  • Alam MS, Kumar D, Chatterjee RS. 2022. Improving the capability of integrated DInSAR and PSI approach for better detection, monitoring, and analysis of land surface deformation in underground mining environment. Geocarto Int. 37(12):3607–3641.
  • Ansari H, De Zan F, Adam N, Goel K, Bamler R. 2016. Sequential estimator for distributed scatterer interferometry. In: Proceedings of IGARSS 2016. Beijing, China: IEEE.
  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens. 40:2375–2383.
  • Cao N, Lee H, Jung HC. 2015. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry. IEEE Geosci Remote Sens Lett. 12:1838–1842.
  • Cao N, Lee H, Jung HC. 2016. A phase-decomposition-based PSInSAR processing method. IEEE Trans Geosci Remote Sens. 54(2):1074–1090.
  • Chen Y, Li Z, Penna NT. 2017. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens Environ. 204:109–121.
  • Chen Y, Tan K, Yan S, Zhang K, Zhang H, Liu X, Li H, Sun Y. 2019. Monitoring land surface displacement over Xuzhou (China) in 2015-2018 through PCA-based correction applied to SAR interferometry. Remote Sens. 11:1494.
  • Costantini F, Mouratidis A, Schiavon G, Sarti F. 2016. Advanced InSAR techniques for deformation studies and for simulating the PS-assisted calibration procedure of Sentinel-1 data: case study from Thessaloniki (Greece), based on the Envisat/ASAR archive. Int J Remote Sens. 37(4):729–744.
  • Ding X, Li Z, Zhu J, Feng G, Long J. 2008. Atmospheric effects on InSAR measurements and their mitigation. Sensors. 8(9):5426–5448. doi: 10.3390/s8095426.
  • Du Z, Ge L, Ng A, Li X. 2018. Investigation on mining subsidence over Appin-West Cliff Colliery using time-series SAR interferometry. Int J Remote Sens. 39(5):1528–1547.
  • Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens. 38:2202–2212.
  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A. 2011. A new algorithm for processing interferometric data-stacks: squeeSAR. IEEE Trans Geosci Remote Sens. 49:3460–3470.
  • Fornaro G, Verde S, Reale D, Pauciullo A. 2015. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing. IEEE Trans Geosci Remote Sens. 53(4):2050–2065.
  • He Q, Zhang Y, Wu H, Luo Y. 2021. Mining subsidence monitoring with modified time-series SAR interferometry method based on the multi-level processing strategy. IEEE Access. 9:106039–106048. doi: 10.1109/ACCESS.2021.3099633.
  • Hooper A. 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett. 35: l16302.
  • Hu B, Zhou J, Wang J, Chen Z, Wang D, Xu S. 2009. Risk assessment of land subsidence at Tianjin coastal area in China. Environ Earth Sci. 59(2):269–276. doi: 10.1007/s12665-009-0024-6.
  • Jiang M, Ding X, Hanssen RF, Malhotra R, Chang L. 2015. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR. IEEE Trans Geosci Remote Sens. 53:1213–1224.
  • Jiang M, Ding X, He X, Li Z, Shi G. 2016. FaSHPS-InSAR technique for distributed scatterers: a case study over the lost hills oil field, California. Chinese J Geophys. 59(10):3592–3603.
  • Jiang M, Guarnieri AM. 2020. Distributed scatterer interferometry with the refinement of spatiotemporal coherence. IEEE Trans Geosci Remote Sens. 58(6):3977–3987.
  • Li B, Li G, Na J, Tu L, Fan J, Wu Y. 2022. Identification of surface deformation caused by geothermal resource extraction using SBAS time-series technology. Bull Surv Mapp. (2):43–49.
  • Li T. 2014. Deformation monitoring by multi-temporal InSAR with both point and distributed scatterers [PhD dissertation]. Chengdu, China: Southwest Jiaotong University.
  • Li T, Zhang H, Fan H, Zheng C, Liu J. 2021. Position inversion of goafs in deep coal seams based on DS-InSAR Data and the probability integral methods. Remote Sens. 13:2898.
  • Liu G, Luo X, Chen Q, Huang D, Ding X. 2008. Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors. 8(8):4725–4741. doi: 10.3390/s8084725.
  • Liu J, Wang Y, Li Y, Dang L, Liu X, Zhao H, Yan S. 2019. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers: a case study of Miquan coal fire zone in Xinjiang, China. IEEE Access. 7:164492–164506. doi: 10.1109/ACCESS.2019.2952363.
  • Liu L, Xue C. 2019. Explanatory comment on the geography and construction of Xiongxian county from historic documents. Archit J. (S1):164–168.
  • Liu X. 2018. Study on ground subsidence monitoring in mining area based on multi spaceborne SAR images [PhD dissertation]. Xuzhou, China: China University of Mining & Technology.
  • Liu Y, Fan H, Wang L, Zhuang H. 2020. Monitoring of surface deformation in a low coherence area using distributed scatterers InSAR: case study in the Xiaolangdi Basin of the Yellow River, China. Bull Eng Geol Environ. 80(1):25–39. doi: 10.1007/s10064-020-01929-1.
  • Liu Y, Zhao C, Zhang Q, Yang C, Zhang J. 2018. Land subsidence in Taiyuan, China, monitored by InSAR technique with multisensor SAR datasets from 1992 to 2015. IEEE J Sel Topics Appl Earth Observ Remote Sens. 11(5):1509–1519.
  • Lu L, Fan H, Liu J, Liu JL, Yin J. 2019. Time series mining subsidence monitoring with temporarily coherent points interferometry synthetic aperture radar: a case study in Peixian, China. Environ Earth Sci. 78(15):461. doi: 10.1007/s12665-019-8475-x.
  • Mora O, Mallorqui JJ, Broquetas A. 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens. 41:2243–2253.
  • Pang Z, Kong Y, Pang J, Hu S, Wang J. 2017. Geothermal resources and development in Xiongan New Area. Bull Chinese Acad Sci. 32(11):1224–1230.
  • Parizzi A,Brcic R. 2011. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results. IEEE Geosci Remote Sensing Lett. 8(3):441–445. doi: 10.1109/LGRS.2010.2083631.
  • Pepe A, Yang Y, Manzo M, Lanari R. 2015. Improved EMCF-SBAS processing chain based on advanced techniques for the noise-filtering and selection of small baseline multi-look DInSAR interferograms. IEEE Trans Geosci Remote Sens. 53(8):4394–4417.
  • Robertson L, Andrew D, McNairn H, Hosseini M, Mitchell S, Abelleyra D, Verón S, Cosh MH. 2020. Synthetic aperture radar (SAR) image processing for operational space-based agriculture mapping. Int J Remote Sens. 41(18):7112–7144.
  • Sun Q, Jiang L, Jiang M, Lin H, Ma P, Wang H. 2018. Monitoring coastal reclamation subsidence in Hong Kong with distributed scatterer interferometry. Remote Sens. 10:1738.
  • Verde S, Reale D, Pauciullo A, Fornaro G. 2018. Improved small baseline processing by means of CAESAR eigen-interferograms decomposition. ISPRS J Photogramm Remote Sens. 139:1–13. doi: 10.1016/j.isprsjprs.2018.02.019.
  • Wang H, Wang Y, Jiao X, Qian G. 2014. Risk management of land subsidence in Shanghai. Desalination Water Treat. 52:1122–1129.
  • Wang M, Li T, Jiang L. 2016. Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers. Nat Hazards. 82(1):531–543. doi: 10.1007/s11069-016-2196-1.
  • Wang Y, Zhu X. 2016. Robust estimators for multipass SAR interferometry. IEEE Trans Geosci Remote Sens. 54(2):968–980.
  • Xia J, Zhang Y. 2017. Water resource and pollution safeguard for Xiongan New Area construction and its sustainable development. Bull Chinese Acad Sci. 32(11):1199–1205.
  • Xu X, Zhao D, Ma C, Lian D. 2021. Monitoring subsidence deformation of Suzhou subway using InSAR timeseries analysis. IEEE Access. 9:3400–3416. doi: 10.1109/ACCESS.2020.3047574.
  • Yazici BV, Gormus ET. 2021. Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey. Geocarto Int. 37(8):2293–2311.
  • Yu Z, Huang G, Zhang C, Zhao X. 2021. SBAS-InSAR deformation reconstruction based on low-rank matrix completion in Southern Zibo, China. Arabian J Geosci. 14(4):1–9.
  • Zhang L, Ding X, Lu Z. 2011. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J Photogramm Remote Sens. 66(1):146–152. doi: 10.1016/j.isprsjprs.2010.10.004.
  • Zhang Y, Li M, Wu H, Liu B, Kang Y, He Q. 2019. Ground subsidence monitoring over full territory of Jiangsu province with InSAR. Sci Surv Mapp. 44(6):114–120.
  • Zhang Y, Liu B, Wu H, Cheng X, Kang YH. 2018. Ground subsidence in Xiong’an new area from 2012 to 2016 monitored by InSAR technique. J Earth Sci Environ. 40(5):652–662.
  • Zhang Y, Wu H, Kang Y, Zhu C. 2016. Ground subsidence in the Beijing-Tianjin-Hebei region from 1992 to 2014 revealed by multiple SAR stacks. Remote Sens. 8:675.
  • Zhang Y, Wu H, Li M, Kang Y, Lu Z. 2021. Investigating ground subsidence and the causes over the whole Jiangsu province, China using sentinel-1 SAR data. Remote Sens. 13(2):179.