93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Warming inland water in peninsular Spain revealed by landsat 5 analysis

, , , &
Article: 2371923 | Received 23 Jan 2024, Accepted 19 Jun 2024, Published online: 03 Jul 2024

References

  • Aguilar-Lome J, Soca-Flores R, Gómez D. 2021. Evaluation of the Lake Titicaca’s surface water temperature using LST MODIS time series (2000–2020). J South Am Earth Sci. 112:103609. doi: 10.1016/j.jsames.2021.103609.[Mismatch]
  • Alcântara EH, Stech JL, Lorenzzetti JA, Bonnet MP, Casamitjana X, Assireu AT, Novo EMLdM 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sens Environ. 114(11):2651–2665. doi: 10.1016/j.rse.2010.06.002.
  • Alvarez Cobelas M, Rojo García-Morato C. 2021. That twenty years is nothing for gravel-pit limnology. Limnetica. 40(1):169–187. doi: 10.23818/limn.40.12.
  • Aranda A, Rivera-Ruiz D, Rodríguez-López L, Pedreros P, Arumí-Ribera J, Morales-Salinas L, Fuentes-Jaque G, Urrutia R. 2021. Evidence of climate change based on lake surface temperature trends in south central Chile. Remote Sens. 13(22):4535. doi: 10.3390/rs13224535.
  • Arias-Rodriguez LF, Tüzün UF, Duan Z, Huang J, Tuo Y, Disse M. 2023. Global water quality of inland waters with harmonized landsat-8 and sentinel-2 using cloud-computed machine learning. Remote Sens. 15(5):1390. doi: 10.3390/RS15051390/S1.
  • Armstrong JB, Fullerton AH, Jordan CE, Ebersole JL, Bellmore JR, Arismendi I, Penaluna B, Reeves GH. 2021. The importance of warm habitat to the growth regime of cold-water fishes. Nat Clim Chang. 11(4):354–361. doi: 10.1038/s41558-021-00994-y.
  • Austin JA, Colman SM. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional temperatures: a positive ice-albedo feedback. Geophys Res Lett. 34(6):L06604. doi: 10.1029/2006GL029021.
  • Baughman CA, Conaway JS. 2021. Comparison of historical water temperature measurements with Landsat analysis ready data provisional surface temperature estimates for the Yukon River in Alaska. Remote Sens. 13(12):2394. doi: 10.3390/rs13122394.
  • Brönmark C, Hansson LA. 2002. Environmental issues in lakes and ponds: current state and perspectives. Envir Conserv. 29(3):290–307. doi: 10.1017/S0376892902000218.
  • Carosi A, Lorenzoni F, Lorenzoni M. 2023. Synergistic effects of climate change and alien fish invasions in freshwater ecosystems: a review. Fishes. 8(10):486. doi: 10.3390/fishes8100486.
  • Chambers JM, Hastie TJ. 1991. Linear Models. Statistical Models in S. London: Chapman & Hall. doi: 10.1201/9780203738535.
  • Chao Rodríguez Y, el Anjoumi A, Domínguez Gómez JA, Rodríguez Pérez D, Rico E. 2014. Using Landsat image time series to study a small water body in Northern Spain. Environ Monit Assess. 186(6):3511–3522. Available at: doi: 10.1007/S10661-014-3634-8/FIGURES/11.
  • Dekker AG, Hestir EL. 2012. ‘Evaluating the feasibility of systematic inland water quality monitoring with satellite remote sensing’, publications.csiro.au [Preprint]. Available at: https://publications.csiro.au/rpr/download?pid=csiro:EP117441&dsid=DS10 (Accessed: 1 April 2023).
  • del Río S, Herrero L, Pinto-Gomes C, Penas A. 2011. Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Global Planet Change. 78(1-2):65–75. doi: 10.1016/j.gloplacha.2011.05.012.
  • Dokulil MT. 2014. Impact of climate warming on European inland waters. IW. 4(1):27–40. doi: 10.5268/IW-4.1.705.
  • Dokulil MT, de Eyto E, Maberly SC, May L, Weyhenmeyer GA, Woolway RI. 2021. Increasing maximum lake surface temperature under climate change. Clim Change. 165(3-4):1–17. doi: 10.1007/S10584-021-03085-1/FIGURES/6.
  • Dörnhöfer K, Oppelt N. 2016. Remote sensing for lake research and monitoring – recent advances. Ecol Indic. 64:105–122. doi: 10.1016/j.ecolind.2015.12.009.
  • Duan SB, Li ZL, Zhao W, Wu P, Huang C, Han XJ, Gao M, Leng P, Shang G. 2020. Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD, ARM, and NDBC sites. Int J Digital Earth 14(5): 640–660. doi: 10.1080/17538947.2020.1862319.
  • García Vega C, García de Pedraza L. 1991. ‘Contrastes meteorológicos en la península ibérica: cuenca atlántica frente a zona mediterránea’, Repositorios AEMET [Preprint]. https://repositorio.aemet.es/bitstream/20.500.11765/905/1/contrastes_cal92.pdf (Accessed: 1 June 2024).
  • Glibert PM. 2020. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae. 91:101583. doi: 10.1016/J.HAL.2019.03.001.
  • Griffith AW, Gobler CJ. 2020. Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae. 91:101590. doi: 10.1016/J.HAL.2019.03.008.
  • Haase P, Bowler DE, Baker NJ, Bonada N, Domisch S, Garcia Marquez JR, Heino J, Hering D, Jähnig SC, Schmidt-Kloiber A, et al. 2023. The recovery of European freshwater biodiversity has come to a halt. Nature. 2023 620(7974):582–588. doi: 10.1038/s41586-023-06400-1.
  • Hernández A, Trigo RM, Pla-Rabes S, Valero-Garcés BL, Jerez S, Rico-Herrero M, Vega JC, Jambrina-Enríquez M, Giralt S. 2015. Sensitivity of two Iberian lakes to North Atlantic atmospheric circulation modes. Clim Dyn. 45(11-12):3403–3417. doi: 10.1007/S00382-015-2547-8/TABLES/5.
  • Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG. 2015. Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ. 167:181–195. doi: 10.1016/j.rse.2015.05.023.
  • Huang L, Wang X, Yan Y, Jin L, Yang K, Chen A, Zheng R, Ottlé C, Wang C, Cui Y, et al. 2023. Attribution of lake surface water temperature change in large lakes across China over past four decades. JGR Atmospheres. 128(21): e2022JD038465. doi: 10.1029/2022JD038465.
  • Huang Y, Liu H, Hinkel K, Beck R, Yu B, Wu J. 2015. Analysis of water temperature variability of Arctic lakes using Landsat-8 data. International Geoscience and Remote Sensing Symposium (IGARSS), 2015-November, pp. 2501–2503. doi: 10.1109/IGARSS.2015.7326318.
  • Instituto Geográfico Nacional. (no date) El clima en España. https://www.ign.es/espmap/mapas_clima_bach/pdf/Clima_Mapa_1_2texto.pdf. (Accessed: 1 June 2024).
  • Jöhnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biol. 14(3):495–512. doi: 10.1111/j.1365-2486.2007.01510.x.
  • Khorchani M, Martin-Hernandez N, Vicente-Serrano SM, Azorin-Molina C, Garcia M, Domínguez-Duran MªA, Reig F, Peña-Gallardo M, Domínguez-Castro F. 2018. Average annual and seasonal Land Surface Temperature, Spanish Peninsular. J Maps. 14(2):465–475. doi: 10.1080/17445647.2018.1500316.
  • Klein I, Dietz AJ, Gessner U, Galayeva A, Myrzakhmetov A, Kuenzer C. 2014. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int J Appl Earth Obs Geoinf. 26(1):335–349. doi: 10.1016/j.jag.2013.08.004.
  • Kong D, Zhang Y, Gu X, Wang D. 2019. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS J Photogramm Remote Sens. 155:13–24. doi: 10.1016/j.isprsjprs.2019.06.014.
  • Lieberherr G, Wunderle S. 2018. Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes. Remote Sens. 10(7):990. doi: 10.3390/rs10070990.
  • Liu X, Ji, L, Zhang C, Liu Y. 2022. A method for reconstructing NDVI time-series based on envelope detection and the Savitzky-Golay filter. 15(1):553–584. Available at: doi: 10.1080/17538947.2022.2044397.
  • Mahmoudi P, Mohammadi, M, Daneshmand H. 2019. Investigating the trend of average changes of annual temperatures in Iran. Int J Environ Sci Technol. 16(2):1079–1092. doi: 10.1007/s13762-018-1664-4.
  • Malakar NK, Hulley GC, Hook SJ, Laraby K, Cook M, Schott JR. 2018. An operational land surface temperature product for landsat thermal data: methodology and validation. IEEE Trans Geosci Remote Sens. 56(10):5717–5735. doi: 10.1109/TGRS.2018.2824828.
  • Moritz S, Bartz-Beielstein T. 2016. imputeTS: time Series Missing Value Imputation in R. R package version 1.7 [Preprint].
  • Moss B. 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Sci Total Environ. 434:130–142. doi: 10.1016/J.SCITOTENV.2011.07.069.
  • Niedrist GH, Psenner R, Sommaruga R. 2018. Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake. Clim Change. 151(3-4):473–490. doi: 10.1007/S10584-018-2328-6/FIGURES/5.
  • Öğlü B, Möls T, Kaart T, Cremona F, Kangur K. 2020. Parameterization of surface water temperature and long-term trends in Europe’s fourth largest lake shows recent and rapid warming in winter. Limnologica. 82:125777. doi: 10.1016/j.limno.2020.125777.
  • O'Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 42(24):10,773–10,781. doi: 10.1002/2015GL066235.
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep. 1(1):27–37. doi: 10.1111/J.1758-2229.2008.00004.X.
  • Piccolroaz S, Woolway RI, Merchant CJ. 2020. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim Change. 160(3):427–442. doi: 10.1007/s10584-020-02663-z.
  • Piccolroaz S, Zhu S, Ladwig R, Carrea L, Oliver S, Piotrowski AP, Ptak M, Shinohara R, Sojka M, Woolway RI, et al. 2024. Lake water temperature modeling in an era of climate change: data sources, models, and future prospects. Rev Geophys. 62(1):e2023RG000816. doi: 10.1029/2023RG000816.
  • Politi E, Cutler MEJ, Rowan JS. 2012. Using the NOAA advanced very high resolution radiometer to characterise temporal and spatial trends in water temperature of large European lakes. Remote Sens Environ. 126:1–11. doi: 10.1016/j.rse.2012.08.004.
  • Ponkina E, Illiger P, Krotova O, Bondarovich A. 2021. Do ARMA models provide better gap filling in time series of soil temperature and soil moisture? The case of arable land in the Kulunda Steppe, Russia. Land. 10(6):579. doi: 10.3390/land10060579.
  • Ramos-Fuentes A, Palau A, Armengol J, Casasola A, Rodríguez A, Dolz J, Vega JC. 2020. Thermal response of Sanabria Lake to global change (NW Spain). Limnetica. 39(1):455–468. doi: 10.23818/limn.39.29.
  • Ríos-Cornejo D, Penas Á, Álvarez-Esteban R, del Río S. 2015. Links between teleconnection patterns and mean temperature in Spain. Theor Appl Climatol. 122(1-2):1–18. doi: 10.1007/S00704-014-1256-2/TABLES/2.
  • Sánchez DE, García CC, Cantos AJO. 2022. Spatiotemporal changes in frost indicators in Southeastern Spain (1950–2020): influence of the East Atlantic Index (EA). J Appl Meteorol Climatol. 61(9):1305–1327. doi: 10.1175/JAMC-D-21-0064.1.
  • Schaeffer BA, Liames J, Dwyer J, Urquhart E, Salls W, Rover J, Seegers B. 2018. An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries. Int J Remote Sens. 39(22):7789–7805. doi: 10.1080/01431161.2018.1471545.
  • Schneider P, Hook SJ. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett. 37(22). doi: 10.1029/2010GL045059.
  • Schneider P, Hook SJ, Radocinski RG, Corlett GK, Hulley GC, Schladow SG, Steissberg TE. 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys Res Lett. 36(22):L22402. doi: 10.1029/2009GL040846.
  • Schneider P, Hook SJ. 2012. Global trends in lake temperatures observed from space. International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5258–5261. doi: 10.1109/IGARSS.2012.6352423.
  • Seegers BN, Stumpf RP, Schaeffer BA, Loftin KA, Werdell PJ. 2018. Performance metrics for the assessment of satellite data products: an ocean color case study. Opt Express. 26(6):7404–7422. doi: 10.1364/OE.26.007404.
  • Serra T, Pascual J, Brunet R, Colomer J. 2020. The mixing regime and turbidity of Lake Banyoles (NE Spain): response to climate change. Water. 12(6):1621. doi: 10.3390/w12061621.
  • Sima S, Ahmadalipour A, Tajrishy M. 2013. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ. 136:374–385. doi: 10.1016/j.rse.2013.05.014.
  • Stefanidis K, Varlas G, Papaioannou G, Papadopoulos A, Dimitriou E. 2022. Trends of lake temperature, mixing depth and ice cover thickness of European lakes during the last four decades. Sci Total Environ. 830:154709. doi: 10.1016/J.SCITOTENV.2022.154709.
  • Sukristiyanti S, Maria R, Lestiana H. 2018. Watershed-based morphometric analysis: a review. IOP Conf Ser: Earth Environ Sci. 118(1):012028. doi: 10.1088/1755-1315/118/1/012028.
  • Tanır Kayıkçı E, Zengin Kazancı S. 2016. Comparison of regression-based and combined versions of Inverse Distance Weighted methods for spatial interpolation of daily mean temperature data. Arab J Geosci. 9(17):1–10. doi: 10.1007/S12517-016-2723-0/FIGURES/7.
  • Tavares MH, Cunha AHF, Motta-Marques D, Ruhoff AL, Cavalcanti JR, Fragoso CR, Jr., Martín Bravo J, Munar AM, Fan FM, Rodrigues LHR, et al. 2019. Comparison of methods to estimate lake-surface-water temperature using Landsat 7 ETM + and MODIS imagery: case study of a large shallow subtropical lake in Southern Brazil. Water. 11(1):168. doi: 10.3390/w11010168.
  • Tewari K. 2022. A review of climate change impact studies on harmful algal blooms. Phycology. 2(2):244–253. doi: 10.3390/phycology2020013.
  • van Buuren S, Groothuis-Oudshoorn K. 2011. mice: multivariate imputation by chained equations in R. J Stat Softw. 45(3):1–67. doi: 10.18637/jss.v045.i03.
  • Virdis SGP, Soodcharoen N, Lugliè A, Padedda BM. 2020. Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach. Sci Total Environ. 707:135567. doi: 10.1016/J.SCITOTENV.2019.135567.
  • Wang R, Yan X, Niu Z, Chen W. 2021. Long-term changes in inland water surface temperature across china based on remote sensing data. J Hydrometeorol. 22(2):523–532. doi: 10.1175/JHM-D-20-0104.1.
  • Wanishsakpong W, McNeil N. 2016. Modelling of daily maximum temperatures over Australia from 1970 to 2012. Meteorol Appl. 23(1):115–122. doi: 10.1002/met.1536.
  • Whittaker ET. 1922. On a New Method of Graduation. Proc Edinburgh Math Soc. 41[Preprint]:63–75. doi: 10.1017/S0013091500077853.
  • Woodward G, Perkins DM, Brown LE. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci. 365(1549):2093–2106. doi: 10.1098/RSTB.2010.0055.
  • Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nat Rev Earth Environ. 1(8):388–403. doi: 10.1038/s43017-020-0067-5.
  • Woolway RI, Weyhenmeyer GA, Schmid M, Dokulil MT, de Eyto E, Maberly SC, May L, Merchant CJ. 2019. Substantial increase in minimum lake surface temperatures under climate change. Clim Change. 155(1):81–94. doi: 10.1007/s10584-019-02465-y.
  • Zanter K. 2021. LSDS-1618 Landsat 4-7 Collection 2 (C2) Level 2 Science Product (L2SP) Guide.
  • Zeng L, Wardlow BD, Xiang D, Hu S, Li D. 2020. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens Environ. 237:111511. doi: 10.1016/j.rse.2019.111511.
  • Zeng W, Xu K, Cheng S, Zhao L, Yang K. 2023. Regional remote sensing of lake water transparency based on google earth engine: performance of empirical algorithm and machine learning. App Sci (Switzerland). 13(6):4007. doi: 10.3390/APP13064007/S1.
  • Zhu S, Luo Y, Graf R, Wrzesiński D, Sojka M, Sun B, Kong L, Ji Q, Luo W. 2022. Reconstruction of long-term water temperature indicates significant warming in Polish rivers during 1966–2020. J Hydrol: Reg Stud. 44:101281. doi: 10.1016/j.ejrh.2022.101281.
  • Zibordi G, Kiselev V, Bulgarelli B. 2014. Simulation and analysis of adjacency effects in coastal waters: a case study. Appl Opt. 53(8):1523–1545. doi: 10.1364/AO.53.001523.