1,754
Views
2
CrossRef citations to date
0
Altmetric
Review

Key virulence factors of Streptococcus pneumoniae and non-typeable Haemophilus infuenzae: roles in host defence and immunisation

&
Pages 6-12 | Received 17 May 2010, Accepted 27 Aug 2010, Published online: 15 Jul 2015

References

  • Ulanova M, Tsang RSW. Invasive Haemophilus influenzae disease: Changing epidemiology and host-parasite interactions in the 21't century. Infect Genetics Evolution 2009; 9: 594–605
  • Forsgren A, Riesbeck K, Janson H. Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clin Infect Dis 2008; 46: 726–731
  • Wang JH, Kwon HJ, Jang Y J. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 2009; 119: 1406–1411
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Micro biol 2009; 11:1034-1043
  • Mitchell TJ, Andrew PW. Biological properties of pneumolysin. In: Tomasz A, ed. Streptococcus pneumoniae: molecular biology and mechanisms of disease. New York: Mary Ann Liebert, 2000; 279–286
  • Feldman C, Anderson R, Cockeran R, et al. The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir Med 2002; 96: 580–585
  • Feldman C, Cockeran R, Jedrzejas MJ, et al. Hyaluronidase augments pneumolysin-mediated injury to human ciliated respiratory epithelium. Intemat J Infect Dis 2007; 11: 11–15
  • Kadioglu A, Weiser JN, Paton JC, et al The role of Streptococcus pneumoniae virulence factors in host colonization and disease. 2008; 6: 288–301
  • Preston JA, Dockrell DH. Virulence factors in pneumococcal respiratory pathogenesis. Future MicrobioI2008; 3: 205–221
  • Lu L, Ma Z, Jokiranta S, et al Species-specific interaction of Streptococcus pneumoniae with human complement factor H. J Immuno12008; 181:7138–7146
  • Littmann M, Albiger B, Frentzen A, et aL Streptococcus pneumoniae evades human dendritic cell surveillance by pneumolysin expression. EMBO Mol Med 2009; 1:211–222
  • Rajam G, Anderton JM, Carlone GM, et al Pneumococcal surface adhesin A (PsaA): A review. Grit Rev Micro biol 2008; 34: 1–11
  • Papasergi S, Garibaldi M, Tuscano G, et al. Plasminogen- and fibronectin-binding protein B is involved in the adherence of Streptococcus pneumoniae to human epithelial cells. J Biol Chem 2010; 285:7517–7524
  • Soong G, Muir A, Gomez MI, et al Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 2006; 116:2297–2305
  • Feldman C, Munro N, Jeffery PF, et al Pneumolysin induces the salient histologic features of pneumococcal infection in the rat lung in vivo. Am J Respir Cell Mol Bio11991; 5: 416–423
  • Witzenrath M, Gutbier B, Hocke AC, et al Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia. Crit Care Med 2006; 34:1947–1954
  • Bogaert D, De Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneu-mococcal disease. Lancet Infect Dis 2004; 4:144–154
  • Ogunniyi AD, Grabowicz M, Bri les D, et al Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 2007; 75: 350–357
  • Ratner AJ, Hippe KR, Aguilar JL, et al Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 2006; 281: 12994–12998
  • Koga T, Lim JY, Jono H, et al Tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for Streptococcus pneumoniae- induced NFAT signaling. J Biol Chem 2008; 283: 12546–12554
  • Aguilar JL, Kulkarni R, Randis TM, et al Phosphatase-dependent regulation of epithelial m itogen-activated protein kinase responses to toxin-induced membrane pores. PLoS ONE 2009; 4: e8076
  • Mathias KA, Roche AM, Standish AJ, et al Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J Immuno12008; 180:6246–6254
  • Malley R, Henneke P, Morse SC, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Nall Acad Sci USA 2003; 100: 1966–1971
  • Dessing MC, Hirst RA, de V05 AF, et al Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS ONE 2009; 4: e7993
  • McLeod H, Wetzler LM. T cell activation by TLRs: a role for TLRs in the adaptive immune response. Sci STKE 2007; pe48
  • Dessing MC, Florquin S, Paton JC, et al. Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci. Cell Micro biol 2008; 10: 237–246
  • Spiller S, Elson G, Ferstl R, et al TLR4-induced IFN-γ production increases TLR sensitivity and drives Gram-negative sepsis in mice. J Exp Med 2008; 205:562–565
  • Franchi L, Warner N, Viani K, Nunez G. Function of Nod-like receptors in microbial recognition and host defence. Immunol Rev 2009; 227: 106–128
  • Opit B. Puschel A, Schmeck, B, et al Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 2004; 279: 36426–36432
  • Lu Y-J, Gross J, Bogaert D, et al Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathogens 2008; 4: e1000159
  • Malley R. Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development J Mol Med 2010; 88: 135–142
  • Van Rossum AM, Lysenko ES, Weiser JN. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 2005; 73: 7718–7726
  • Ferreira DM, Darrieux M, Silva DA, etal. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin Vaccine Immuno12009; 16:636–645
  • Raveh D, Kruskal BA, Farland J, et al TM and Th2 cytokines cooperate to stimulate mannose-receptor-mediated phagocytosis. J Leuk Biol 1998; 64:108–113
  • Sun K, Salman SL, Lotz SA, et al Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect Immun 2007; 75: 1196–1202
  • Zamze S, Martinez-Pomares L, Jones H, et al Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. 18101 Chem 2002; 277: 41613–41623
  • Kang YS, Kim JY, Bruening SA, et al The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of the mouse spleen. Proc Nail Acad Sci USA 2004; 101: 215–220
  • Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-dependent clearance of pneumo-coccal colonization in mice. IC/in Invest 2009; 119:1899–1909
  • Caron G, Dulue D, Fremaux I, et al Direct stimulation of human T cells via TLR5 and TLR7/8: Flagellin and R-848 up-regulate proliferation and IFN-γ production by memory CD4+T cells. J.Immunol 2005; 233:1551–1557
  • Xu D, Komai-Koma M, Liew FY. Expression and function of Toll-like receptor on T cells. Cell Im-munol 2005; 233: 85–89
  • lmanishi T, Haran H, Suzuki S, et al Cutting edge: TLR2 directly triggers TM effector functions. J Immunol 2007; 178: 6715–6719
  • Thibault S, Tardif MR, Barat C, et al TLR2 signaling renders quiescent naive and memory CD4+ T cells more susceptible to productive infection with X4 and R5 HIV-Type 1. J Immunol 2007; 179: 4357–4366
  • Cockeran R, Theron AJ, Steel HC, et al Proinflammatory interactions of pneumolysin with human neutrophils. J Infect Dis 2001; 183: 604–611
  • Cockeran R, Durandt C, Feldman C, et al Pneumolysin activates the synthesis and release of interleukin-8 by human neutrophils in vitro. J Infect Dis 2002; 186: 562–565
  • Garcia-Suarez Mdel M, Florez N, Astudillo A, et al The role of pneumolysin in mediating lung damage in a lethal pneumoccocal pneumonia murine model. Respir Res 2007;8: 3
  • Erwin AL, Smith AL Nontypeable Haemophilus influenzae: Understanding virulence and commensal behaviour. Trends MicrobioI2007; 15: 355–362
  • Schweda EKH, Richards JC, Wood DW, et at Expression and structural diversity of the lipopolysac-charide of Haemophilus influenzae: Implication in virulence. Intemat J Med Micro biol 2007; 297: 297–306
  • Hardy GG, Tudor SM, St Geme JW 3rd. The pathogenesis of disease due to nontypeable Haemophilus influenzae. Methods Mol Med 2003; 71:1–28
  • St Geme JW 3rd, Yeo H-J. A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems. Trends MicrobioI2009; 17: 355–360
  • Hallström T, Blom AM, Zipfel PF, et al Nontypeable Haemophilus influenzae protein E binds vitro-nectin and is important for serum resistance. J Immuno12007; 183: 2593–2601
  • Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin: a double-edged sword during the host-pathogen interaction. Cum Mol Med 2008; 8: 497–509
  • Meng C, Lin H, Huang J, et al Development of 5-valent conjugate pneumococcal protein A-Capsular polysaccharide pneumococcal vaccine against invasive pneumococcal disease. Microb Pathog 2009; 47: 151–156
  • Murphy TF. Current and future prospects for a vaccine for nontypeable Haemophilus influenzae. Curr Infect Dis Rep 2009; 11: 177–182