502
Views
3
CrossRef citations to date
0
Altmetric
Scientific Paper

IABSE Task Group 3.1 Benchmark Results. Numerical Full Bridge Stability and Buffeting Simulations

(Prof.) ORCID Icon, , , , ORCID Icon, (Prof.) ORCID Icon, ORCID Icon, ORCID Icon, , (Prof.) ORCID Icon, (Prof.) ORCID Icon, ORCID Icon, , , (Prof.) ORCID Icon, (Prof.) ORCID Icon, ORCID Icon & show all

References

  • Diana G, Stoyanoff S, Aas-Jakobsen K, et al. IABSE task group 3.1 benchmark results. part 2: numerical analysis of a three-degree-of-freedom bridge deck section based on experimental aerodynamics. Struct Eng Int. 2020;30(3):411–420. DOI:10.1080/10168664.2019.1661331.
  • Diana G, Stoyanoff S, Aas-Jakobsen K, et al. IABSE task group 3.1 benchmark results. part 1: numerical analysis of a two-degree-of-freedom bridge deck section based on analytical aerodynamics. Struct Eng Int. 2020;30(3):401–410. DOI:10.1080/10168664.2019.1639480.
  • Wu T, Kareem A. Bridge aerodynamics and aeroelasticity: a comparison of modeling schemes. J Fluids Struct. 2013;43:347–370. DOI:10.1016/j.jfluidstructs.2013.09.015.
  • Strømmen EN. Theory of bridge aerodynamics. 2nd ed. Berlin, Heidelberg: Springer, 2010.
  • Jain A, Jones NP, Scanlan RH. Coupled flutter and buffeting analysis of long-span bridges. J Struct Eng New York, N.Y. 1996;122(7):716–725. DOI:10.1061/(ASCE)0733-9445(1996)122:7(716).
  • Davenport AG. The response of slender, line-like structures to a gusty wind. Proce Inst Civil Eng. 1962;23(3):389–408.
  • Davenport AG. Buffeting of a suspension bridge by storm winds. J Struct Div. 1962;88(3):233–268.
  • Irwin PA. Wind tunnel and analytical investigation of the response of lion’s gate bridge to a turbulent wind. LTR-LA-210. Ottawa: National Research Council Canada; 1977.
  • Beliveau J, Vaicaitis R, Shinozuka M. Motion of suspension bridge subject to wind loads. J Struct Division. 1977;103(6):1189–1205.
  • Solari G, Spinelli P. Time-domain analysis of tall buildings response to wind action. 1984.
  • Hao J, Wu T. Downburst-induced transient response of a long-span bridge: a CFD-CSD-based hybrid approach. J Wind Eng Ind Aerodyn. 2018;179:273–286. DOI:10.1016/j.jweia.2018.06.006.
  • Hao J, Wu T. Nonsynoptic wind-induced transient effects on linear bridge aerodynamics. J Eng Mech. 2017;143(9). DOI:10.1061/(ASCE)EM.1943-7889.0001313.
  • Wu T, Kareem A. A nonlinear analysis framework for bluff-body aerodynamics: a Volterra representation of the solution of navier-stokes equations. J Fluids Struct. 2015;54:479–502. DOI:10.1016/j.jfluidstructs.2014.12.005.
  • Diana G, Rocchi D, Argentini T. An experimental validation of a band superposition model of the aerodynamic forces acting on multi-box deck sections. J Wind Eng Ind Aerodyn. 2013;113:40–58. DOI:10.1016/j.jweia.2012.12.005.
  • Wu T, Kareem A, Ge Y. Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges. Nonlinear Dyn. 2013;74(3):487–516. DOI:10.1007/s11071-013-0984-7.
  • Argentini T, Diana G, Rocchi D, Somaschini C. A case-study of double multi-modal bridge flutter: experimental result and numerical analysis. J. Wind Eng. Ind. Aerodyn. 2016;151:25–36. doi:10.1016/j.jweia.2016.01.004.
  • Diana G, Omarini S. A non-linear method to compute the buffeting response of a bridge validation of the model through wind tunnel tests. J Wind Eng Ind Aerodyn. 2020;201. DOI:10.1016/j.jweia.2020.104163.
  • Wu T, Kareem A. A nonlinear convolution scheme to simulate bridge aerodynamics. Comput Struct. 2013;128:259–271. DOI:10.1016/j.compstruc.2013.06.004.
  • Skyvulstad H, Argentini T, Zasso A, Øiseth O. Nonlinear modelling of aerodynamic self-excited forces: an experimental study. J Wind Eng Ind Aerodyn. 2021;209. DOI:10.1016/j.jweia.2020.104491.
  • Skyvulstad H, Petersen ØW, Argentini T, Zasso A, Øiseth O. The use of a Laguerrian expansion basis as Volterra kernels for the efficient modeling of nonlinear self-excited forces on bridge decks. J Wind Eng. Ind. Aerodyn. 2021;219. DOI:10.1016/j.jweia.2021.104805.
  • Stoyanoff S. A unified approach for 3D stability and time domain response analysis with application of quasi-steady theory. J Wind Eng Ind Aerodyn. 2001;89(14–15):1591–1606. DOI:10.1016/S0167-6105(01)00157-X.
  • Kavrakov I, McRobie A, Morgenthal G. Data-driven aerodynamic analysis of structures using gaussian processes; 2021.
  • Argentini T, Rocchi D, Somaschini C. Effect of the low-frequency turbulence on the aeroelastic response of a long-span bridge in wind tunnel. J Wind Eng Ind Aerodyn. 2020;197. DOI:10.1016/j.jweia.2019.104072.
  • Diana G, Rocchi D, Argentini T, Muggiasca S. Aerodynamic instability of a bridge deck section model: linear and nonlinear approach to force modeling. J Wind Eng Ind Aerodyn. 2010;98(6–7):363–374. DOI:10.1016/j.jweia.2010.01.003.
  • Kavrakov I, Morgenthal G. A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of bridges in turbulent wind conditions. J Fluids Struct. 2018;82:59–85. DOI:10.1016/j.jfluidstructs.2018.06.013.
  • Bućher CG, Lin YK. Stochastic stability of bridges considering coupled modes: II. J Eng Mech. 1989;115(2):384–400. DOI:10.1061/(ASCE)0733-9399(1989)115:2(384).
  • Chen X, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. J Eng Mech. 2000;126(1):7–16. DOI:10.1061/(ASCE)0733-9399(2000)126:1(7).
  • Kavrakov I, Morgenthal G. A comparative assessment of aerodynamic models for buffeting and flutter of long-span bridges. Engineering. 2017;3(6):823–838. DOI:10.1016/j.eng.2017.11.008.
  • Øiseth O, Sigbjörnsson R. An alternative analytical approach to prediction of flutter stability limits of cable supported bridges. J Sound Vibrat. 2011;330(12):2784–2800. DOI:10.1016/j.jsv.2010.12.026.
  • Øiseth O, Rönnquist A, Sigbjörnsson R. Finite element formulation of the self-excited forces for time-domain assessment of wind-induced dynamic response and flutter stability limit of cable-supported bridges. Finite Elements Anal Des. 2012;50:173–183. DOI:10.1016/j.finel.2011.09.008.
  • Øiseth O, Rönnquist A, Sigbjörnsson R. Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. J Wind Eng Ind Aerodyn. 2010;98(12):730–741. DOI:10.1016/j.jweia.2010.06.009.
  • Øiseth O, Rönnquist A, Sigbjörnsson R. Time domain modeling of self-excited aerodynamic forces for cable-supported bridges: a comparative study. Computers and Structures. 2011;89(13–14):1306–1322. DOI:10.1016/j.compstruc.2011.03.017.
  • Stoyanoff S, Dallaire PO. A direct method for calculation of wind loads on LongSpan bridges. In: 12th Americas Conference on Wind Engineering 2013, ACWE 2013: Wind Effects on Structures, Communities, and Energy Generation, 2013. p. 1316–1325.
  • Park J, Jung K, Hong YH, Kim H, Lee HS. Exact enforcement of the causality condition on the aerodynamic impulse response function using a truncated Fourier series. J Eng Mech. 2014;140(5). doi:10.1061/(ASCE)EM.1943-7889.0000721.
  • Jung K, Kim H, Lee HS. New unified approach for aeroelastic analyses using approximate transfer functions of aerodynamic forces. J Eng Mech. 2014;140(4). doi:10.1061/(ASCE)EM.1943-7889.0000716.
  • Jung K, Kim H, Lee HS. Evaluation of impulse response functions for convolution integrals of aerodynamic forces by optimization with a penalty function. J Eng Mech. 2012;138(5):519–529. DOI:10.1061/(ASCE)EM.1943-7889.0000355.
  • Matsumoto M, Okubo K, Ito Y, Matsumiya H, Kim G. The complex branch characteristics of coupled flutter. J Wind Eng Ind Aerodyn. 2008;96(10–11):1843–1855. DOI:10.1016/j.jweia.2008.02.011.
  • Møller RN, Krenk S, Svendsen MN. Time simulation of aerodynamic response of long-span bridges to turbulent wind. J Wind Eng Ind Aerodyn. 2020;199. DOI:10.1016/j.jweia.2019.104060.
  • Argentini T, Pagani A, Rocchi D, Zasso A. Monte Carlo analysis of total damping and flutter speed of a long span bridge: effects of structural and aerodynamic uncertainties. J Wind Eng Ind Aerodyn. 2014;128:90–104. DOI:10.1016/j.jweia.2014.02.010.
  • Chen X, Kareem A, Matsumoto M. Multimode coupled flutter and buffeting analysis of long span bridges. J Wind Eng Ind Aerodyn. 2001;89(7–8):649–664. DOI:10.1016/S0167-6105(01)00064-2.
  • Diana G, Rocchi D, Argentini T. Buffeting response of long span bridges: numerical-experimental validation of fluid-structure interaction models. In: IABSE conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges – Report; 2015. https://www.scopus.com/record/display.uri?eid=2-s2.0-84971301417&origin=resultslist.
  • Cid Montoya M, Hernández S, Nieto F, Kareem A. Aero-structural design of bridges focusing on the buffeting response: formulation, parametric studies and deck shape tailoring. J Wind Eng Ind Aerodyn. 2020;204. doi:10.1016/j.jweia.2020.104243.
  • Wu T, Kareem A. Revisiting convolution scheme in bridge aerodynamics: comparison of step and impulse response functions. J Eng Mech. 2014;140(5). doi:10.1061/(ASCE)EM.1943-7889.0000709.
  • Kavrakov I, Legatiuk D, Gürlebeck K, Morgenthal G. A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks. R Soc Open Sci. 2019;6(3). DOI:10.1098/rsos.181848.
  • Hodges DH, Pierce GA. Introduction to structural dynamics and aeroelasticity, second edition. In: Introduction to Structural Dynamics and Aeroelasticity, 2nd ed. 2011. doi:10.1017/CBO9780511997112.
  • Scanlan RH. The action of flexible bridges under wind, II: buffeting theory. J. Sound Vibrat. 1978;60(2):201–211. DOI:10.1016/S0022-460X(78)80029-7.
  • Argentini T, Rocchi D, Somaschini C, Spinelli U, Zanelli F, Larsen A. Aeroelastic stability of a twin-box deck: comparison of different procedures to assess the effect of geometric details. J Wind Eng Ind Aerodyn. 2022;220. DOI:10.1016/j.jweia.2021.104878.
  • Larsen A. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the great belt. J Wind Eng Ind Aerodyn. 1993;48(2–3):261–285. DOI:10.1016/0167-6105(93)90141-A.
  • COWI, BHR and R&H. Storebælt east bridge tender design, dynamic analyses. (Doc. No. 2000-X012-001), 1992.
  • Katsuchi H, Jones NP, Scanlan RH. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J Struct Eng. 1999;125(1):60–69. DOI:10.1061/(asce)0733-9445(1999)125:1(60).
  • Deodatis G. Simulation of Ergodic multivariate stochastic processes. J Eng Mech. 1996;122(8):778–787. DOI:10.1061/(ASCE)0733-9399(1996)122:8(778).
  • Ding Q, Zhu L, Xiang H. Simulation of stationary Gaussian stochastic wind velocity field. Wind Struct Int J. 2006;9(3):231–243. DOI:10.12989/was.2006.9.3.231.
  • Shinozuka M, Jan C. Digital simulation of random processes and its applications. J Sound Vibrat. 1972;25(1):111–128. DOI:10.1016/0022-460X(72)90600-1.
  • Diana G, et al. Flutter derivatives identification on a very large scale aeroelastic deck model. In: IABSE conference, Vancouver 2017: engineering the future – report; 2017. p. 1997–2005.
  • Zasso A. Flutter derivatives: advantages of a new representation convention. J Wind Eng Ind Aerodyn. 1996;60(1–3):35–47. DOI:10.1016/0167-6105(96)00022-0.
  • Diana G, Bruni S, Cigada A, et al. Turbulence effect on flutter velocity in long span suspended bridges. J Wind Eng Ind Aerodyn. 1993;48(2):329–342. doi:10.1016/0167-6105(93)90144-D.
  • Diana G, Cheli F, Zasso A, et al. Suspension bridge parameter identification in full scale test. J. Wind Eng. Ind. Aerodyn. 1992;41(1):165–176. doi:10.1016/0167-6105(92)90404-X.
  • Diana G, Resta F, Zasso A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge. J. Wind Eng. Ind. Aerodyn. 2004;92(6):441–462. DOI:10.1016/j.jweia.2004.01.005.
  • Scanlan RH. Motion-related body-force functions in two-dimensional low-speed flow. J Fluids Struct. 2000;14(1):49–63. doi:10.1006/jfls.1999.0252.
  • Kavrakov I, Kareem A, Morgenthal G. Comparison metrics for time-histories: application to bridge aerodynamics. J Eng Mech. 2020;146(9). doi:10.1061/(ASCE)EM.1943-7889.0001811.
  • Cook NJ, Mayne JR. A refined working approach to the assessment of wind loads for equivalent static design. J Wind Eng Ind Aerodyn. 1980;6(1):125–137. doi:10.1016/0167-6105(80)90026-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.