83
Views
5
CrossRef citations to date
0
Altmetric
Articles

Positive computational modelling of the dynamics of active and inert biomass with extracellular polymeric substances

Pages 319-335 | Received 01 Dec 2014, Accepted 09 Jan 2015, Published online: 16 Feb 2015

References

  • R.Anguelov, J.S.Lubuma, and M.Shillor, Topological dynamic consistency of non-standard finite difference schemes for dynamical systems, J. Difference Equ. Appl.17(12) (2011), pp. 1769–1791. doi:10.1080/10236198.2010.488226.
  • M.Böl, R.B.Möhle, M.Haesner, T.R.Neu, H.Horn, and R.Krull, 3D finite element model of biofilm detachment using real biofilm structures from CLSM data, Biotechnol. Bioeng.103 (2008), pp. 177–186.
  • W.Cao, H.Zhang, Y.Wang, and J.Z.Pan, Bioremediation of polluted surface water by using biofilms on filamentous bamboo, Ecol. Eng.42 (2012), pp. 146–149. doi:10.1016/j.ecoleng.2012.02.018.
  • I.Del castillo, P.Hernández, A.Lafuente, I.D.Rodríguez-Llorente, M.A.Caviedes, and E.Pajuelo, Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles, Water Res.46(6) (2012), pp. 1723–1734. doi:10.1016/j.watres.2011.12.038.
  • S.K.Checa, M.D.Zurbriggen, and F.C.Soncini, Bacterial signaling systems as platforms for rational design of new generations of biosensors, Curr. Opin. Biotechnol.23(5) (2012), pp. 766–772. doi:10.1016/j.copbio.2012.05.003.
  • H.H.Chen, X.Liu, C.Ni, Y.P.Lu, G.Y.Xiong, Y.Y.Lu, and S.Q.Wang, Bacterial biofilms in chronic rhinosinusitis and their relationship with inflammation severity, Auris Nasus Larynx39(2) (2012), pp. 169–174. doi:10.1016/j.anl.2011.04.014.
  • D.Ding, Q.Ma, and X.Ding, A non-standard finite difference scheme for an epidemic model with vaccination, J. Difference Equ. Appl.19(2) (2013), pp. 179–190. doi:10.1080/10236198.2011.614606.
  • H.J.Eberl, A deterministic continuum model for the formation of eps in heterogeneous biofilm architectures, Proc. Biofilms1 (2004), pp. 237–242.
  • H.J.Eberl, and L.Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electron. J. Differential Equations15 (2007), pp. 77–95.
  • H.J.Eberl, D.Parker, and M.Loosdrechtvan, A new deterministic spatio–temporal continuum model for biofilm development, J. Theor. Med.3(3) (2001), pp. 161–175. doi:10.1080/10273660108833072.
  • H.J.Eberl, D.F.Parker, and M.C.M.Loosdrechtvan, A new deterministic spatio–temporal continuum model for biofilm development, Comput. Math. Methods Med.3 (2001), pp. 161–175.
  • M.A.Efendiev, H.J.Eberl, and S.V.Zelik, Existence and longtime behavior of solutions of a nonlinear reaction-diffusion system arising in the modeling of biofilms, RIMS Kokyuroko1258 (2002), pp. 49–71.
  • N.T.W.Ellwood, F.Di Pippo, and PAlbertano, Phosphatase activities of cultured phototrophic biofilms, Water Res.46 (2013), pp. 378–386.
  • R.A.Fisher, The wave of advance of advantageous genes, Ann. Eugenics7(4) (1937), pp. 355–369. doi:10.1111/j.1469-1809.1937.tb02153.x.
  • T.Fujimoto, and R.R.Ranade, Two characterizations of inverse-positive matrices: The Hawkins–Simon condition and the Le Chatelier–Braun principle, Electron. J. Linear Algebra11 (2004), pp. 59–65.
  • T.Fujimoto, J.A.Silva, and A.Villar, Nonlinear generalizations of theorems on inverse-positive matrices, in Advances in Mathematical Economics, Springer, Tokyo, Japan, 2003, pp. 55–63.
  • S.W.Hermanowicz, A simple 2D biofilm model yields a variety of morphological features, Math. Biosci.169(1) (2001), pp. 1–14. doi:10.1016/S0025-5564(00)00049-3.
  • N.Høiby, O.Ciofu, H.K.Johansen, Z.j.Song, C.Moser, P.Ø.Jensen, S.Molin, M.Givskov, T.Tolker-Nielsen, and T.Bjarnsholt, The clinical impact of bacterial biofilms, Int. J. Oral Sci.3 (2013), p. 55.
  • A.Jain, G.Gazzola, A.Panzera, M.Zanoni, and E.Marsili, Visible spectroelectrochemical characterization of geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode, Electrochim. Acta56(28) (2011), pp. 10776–10785. doi:10.1016/j.electacta.2011.02.073.
  • Y.Jiao, Q.Zhao, W.Jin, X.Hao, and S.You, Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water, Bioresour. Technol.102(2) (2011), pp. 990–995. doi:10.1016/j.biortech.2010.09.061.
  • P.M.Jordan, A nonstandard finite difference scheme for nonlinear heat transfer in a thin finite rod, J. Difference Equ. Appl.9(11) (2003), pp. 1015–1021. doi:10.1080/1023619031000146922.
  • K.Kirketerp-Møller, K.Zulkowski, and G.James, Chronic wound colonization, infection, and biofilms, in Biofilm Infections, Springer, New York, 2011, pp. 11–24.
  • A.Kolmogorov, I.Petrovsky, and N.Piscounov, Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique [Study of the diffusion equations with growing amount of material and its application to a biological problem], Bull. Univ. Moskou, Ser. Internat.1A (1937), pp. 1–25.
  • Y.Liu, F.Harnisch, K.Fricke, R.Sietmann, and U.Schröder, Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosens. Bioelectron.24(4) (2008), pp. 1006–1011. doi:10.1016/j.bios.2008.08.001.
  • Y.Liu, F.Harnisch, K.Fricke, U.Schröder, V.Climent, and J.M.Feliu, The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells, Biosens. Bioelectron.25(9) (2010), pp. 2167–2171. doi:10.1016/j.bios.2010.01.016.
  • J.E.Macías-Díaz, S.Jerez-Galiano, and A.Puri, Positivity-preserving methods for a linearised Fisher–KPP equation with consistency properties in the energy domain, J. Difference Equ. Appl.16(4) (2010), pp. 389–405. doi:10.1080/10236190802448591.
  • J.E.Macías-Díaz, S.Macías, and I.E.Medina-Ramírez, An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology, Comput. Biol. Chem.47 (2011), pp. 24–30.
  • R.E.Mickens, Dynamic consistency: A fundamental principle for constructing nonstandard finite difference schemes for differential equations, J. Difference Equ. Appl.11(7) (2005), pp. 645–653. doi:10.1080/10236190412331334527.
  • M.D.Morales-Hernández, I.E.Medina-Ramírez, F.J.Avelar-González, and J.E.Macías-Díaz, An efficient recursive algorithm in the computational simulation of the bounded growth of biological films, Int. J. Comput. Methods9 (2011), Article ID 1250050.
  • C.Picioreanu, M.C.M.Van Loosdrecht, and J.J.Heijnen, Discrete-differential modelling of biofilm structure, Water Sci. Technol.39(7) (1999), pp. 115–122. doi:10.1016/S0273-1223(99)00158-4.
  • L.I.W.Roeger, and G.LahodnyJr., Dynamically consistent discrete Lotka–Volterra competition systems, J. Difference Equ. Appl.19(2) (2013), pp. 191–200. doi:10.1080/10236198.2011.621894.
  • A.E.A.Stine, D.D.Nassar, J.K.J.Miller, C.B.C.Clemons, J.P.J.Wilber, G.W.G.Young, Y.H.Y.Yun, C.L.C.Cannon, J.G.J.Leid, W.J.W.Youngs, and A.A.Milsted, Modeling the response of a biofilm to silver-based antimicrobial, Math. Biosci.244(1) (2013), pp. 29–39. doi:10.1016/j.mbs.2013.04.006.
  • Y.Tang, and A.J.Valocchi, An improved cellular automaton method to model multispecies biofilms, Water Res.47(15) (2013), pp. 5729–5742. doi:10.1016/j.watres.2013.06.055.
  • P.Tenke, B.Köves, K.Nagy, S.J.Hultgren, W.Mendling, B.Wullt, M.Grabe, F.M.E.Wagenlehner, M.Cek, R.Pickard, H.Botto, K.G.Naber, and T.E.B.Johansen. Update on biofilm infections in the urinary tract. World J Urol30(1) (2012), pp. 51–57. doi:10.1007/s00345-011-0689-9.
  • V.Velusamy, K.Arshak, O.Korostynska, K.Oliwa, and C.Adley, An overview of foodborne pathogen detection: In the perspective of biosensors, Biotechnol. Adv.28(2) (2010), pp. 232–254. doi:10.1016/j.biotechadv.2009.12.004.
  • X.Y.Wang, Z.S.Zhu, and Y.K.Lu, Solitary wave solutions of the generalised Burgers–Huxley equation, J. Phys. A: Math. Gen.23(3) (1990), pp. 271–274. doi:10.1088/0305-4470/23/3/011.
  • Y.Yang, G.Sun, J.Guo, and M.Xu, Differential biofilms characteristics of shewanella decolorationis microbial fuel cells under open and closed circuit conditions, Bioresour. Technol.102(14) (2011), pp. 7093–7098. doi:10.1016/j.biortech.2011.04.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.