146
Views
1
CrossRef citations to date
0
Altmetric
Articles

Global behaviour of a class of discrete epidemiological SI models with constant recruitment of susceptibles

ORCID Icon & ORCID Icon
Pages 259-288 | Received 09 Aug 2021, Accepted 02 Feb 2022, Published online: 23 Feb 2022

References

  • L.J.S. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equ. Appl. 14 (2008), pp. 1127–1147.
  • R.M. Anderson, Evolutionary pressures in the spread and persistence of infectious agents in vertebrate populations, Parasitology 111 (1995), pp. 15–31.
  • R.M. Anderson and R.M. May, Infectious diseases and population cycles of forest insects, Science 210 (1980), pp. 658–661. DOI:https://doi.org/10.1126/science.210.4470.658.
  • N. Bacaär, A short history of mathematical population dynamics, Springer, 2011. 21–30.
  • J. Bektešević, V. Hadžiabdić, S. Kalabušić, M. Mehuljić, and E. Pilav, Dynamics of a class of host-parasitoid models with external stocking upon parasitoids, Adv. Differ. Equ. 2021 (2021), pp. 1–37. DOI:https://doi.org/10.1186/s13662-020-03193-9.
  • K. Blayneh and S. Jang, A discrete SIS-model for a vector-transmitted disease, Appl. Anal. 85 (2006), pp. 1271–1284.
  • F. Brauer, Mathematical epidemiology: past, present, and future, Infect. Dis. Model. 2 (2017), pp. 113–127.
  • C. Castillo-Chavez and A.-A. Yakubu, Discrete-time S-I-S models with simple and complex dynamics, in Mathematical Approaches For Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, Vol. 125, Carlos Castillo-Chavez with Sally Blower, Pauline van den Driessche, Denise Kirschner and Abdul-Aziz Yakubu, eds., Springer-Verlag, 2001.
  • H. Caswell, Matrix Population Models, 2nd ed., Sinauer, Sunderland, MA, 2001.
  • F. Córdova-Lepe, R. Gutiérrez, and K. Vilches-Ponce, Analysis of two discrete forms of the classic continuous SIR epidemiological model, J. Differ. Equ. Appl. 26 (2020). DOI:https://doi.org/10.1080/10236198.2019.1696323.
  • J.M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1998.
  • J.M. Cushing and Z. Yicang, The net reproductive value and stability in matrix population models, Nat. Resour. Model. 8 (1994), pp. 297–333.
  • J. Demongeot, Q. Griette, and P. Magal, SI epidemic model applied to COVID-19 data in mainland China, China. R. Soc. Open Sci. 7 (2020), pp. 201878. DOI:https://doi.org/10.1098/rsos.201878.
  • Q. Din, Dynamics of a host-pathogen model with constant mortality rate, Nonlinear Anal.: Model. Control. 22(2) (2017), pp. 173–187. DOI:https://doi.org/10.15388/NA.2017.2.3.
  • Q. Din, A.K. Khan, and M.N. Qureshi, Qualitative behavior of a host-pathogen model, Adv. Differ. Equ. 263 (2013), pp. 2013. Available at http://www.advancesindifferenceequations.com/content/2013/1/263.
  • A.P. Dobson and B.T. Grenfell, Introduction, in Ecology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson, eds., Publications of the Newton Institute, Cambridge University Press, Cambridge, UK, 1995, pp. 1–19.
  • J.E. Franke and A.A. Yakubu, Discrete-time SIS model in a seasonal environment, SIAM J. Appl. Math. 66(5) (2006), pp. 1563–1587.
  • E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC Press, Boca Raton, 2004.
  • J.K. Hale and P. Waltman, Persistence in infinite-dimensional system, SIAM J. Math. Anal. 20(2) (1989), pp. 388–395.
  • H.W. Hethcote, Qualitative analysis for communicable disease models, Math. Biosci. 28 (1976), pp. 335–356.
  • H.W. Hethcote, Three gasic epidemiological models, Biomathematics (1989), pp. 119–144. DOI:https://doi.org/10.1007/978-3-642-61317-3_5.
  • H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42(4) (2000), pp. 599–653.
  • H.W. Hethcote, H.W. Stech, and P. van den Driessche, Nonlinear oscillations in epidemic models, SIAM J. Appl. Math. 40 (1981), pp. 1–9.
  • Y. Huan, J. Li, J. Zhang, and Z. Jin, Dynamical analysis of the spread of African swine fever with the live pig price in China, Math. Biosci. Eng. 18(6) (2021), pp. 8123–8148.
  • V. Hutson, A theorem on average Liapunov functions, Monatshefte Für Mathematik 98 (1984), pp. 267–275.
  • S. Jang, On a discrete West-Nile epidemic model, Comput. & Appl. Math. 26 (2007), pp. 397–414.
  • S. Jang, Backward bifurcation in a discrete SIS model with vaccination, J. Biol. Syst. 10 (2008), pp. 479–494.
  • S. Kalabušić, Dž. Drino, and E. Pilav, Global behavior and bifurcation in a class of host-parasitoid models with a constant host refuge, Qual. Theory Dyn. Syst. 19(2) (2020), pp.1–37. DOI:https://doi.org/10.1007/s12346-020-00403-3.
  • Y. Kang, Permanence of a general discrete-time two-species interaction model with nonlinear per-capita growth rates, Discrete and Continuous Dyn. Syst.-Ser. B 18(8) (2013), pp. 2123–2142.
  • Y. Kang and P. Chesson, Relative nonlinearity and permanence, Theoretical Biol. 78 (2010), pp. 26–35.
  • Y. Kang and A.A. Yacubu, Weak Allee effects and species coexistence, Nonlinear Anal.:Real World Appl. 12 (2012), pp. 3329–3345.
  • M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
  • W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. Lond. A. 115 (1927), pp. 700–721.
  • V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishing, 1993.
  • R. Kon and Y. Takeuschi, Permanence of host-parasitoid system, Nonlinear Anal. 47(2) (2001), pp. 1383–1393. DOI:https://doi.org/10.1016/S0362-546X(01)00273-5.
  • M.R.S. Kulenović, M. Nurkanović, and A.A. Yakubu, Asymptotic behavior of a discrete-time density-dependent SI epidemic model with constant recruitment, J. Appl. Math. Comput. 67 (2021), pp. 733–753. DOI:https://doi.org/10.1007/s12190-021-01503-2.
  • H.A. Lauwerier and J.A. Metz, Hopf bifurcation in host–parasitoid models, IMA J. Math. Appl. Med. Biol. 3 (1986), pp. 191–210.
  • C.-K. Li and H. Schneider, Applications of Perron-Frobenius theory to population dynamics, J. Math. Biol. 44 (2002), pp. 450–462.
  • R.M. May, Host-parasitoid systems in patchy environments: A phenomenological model, J. Animal Ecol. 47 (1978), pp. 833–843.
  • Y. Muroya, Y. Nakata, G. Izzo, and A. Vecchio, Permanence and global stability of a class discrete epidemic models, Nonlinear Anal.: Real World Appl. 12 (2011), pp. 2105–2117.
  • K.F. Preedy, P.G. Schofield, M.A.J Chaplain, and S.F. Hubbard, Disease induced dynamics in host-parasitoid systems: chaos and coexistence, J. R. Soc. Interface. 4 (2007), pp. 463–471. DOI:https://doi.org/10.1098/rsif.2006.0184.
  • M. Sekiguchi, Permanence of some discrete epidemic models, Int. J. Biomath. 2(4) (2009), pp. 443–461.
  • M. Sekiguchi, Permanence of a discrete SIRS epidemic model with time delays, Appl. Math. Lett. 23 (2010), pp. 1280–1285.
  • Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math. 73 (2013), pp. 1513–1532.
  • M. Song, W. Ma, and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math. 201 (2007), pp. 389–394.
  • Z. Teng, L. Nie, and J. Xu, Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure, Adv. Differ. Equ. 87 (2013), pp. 1–23.
  • H. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci. 166 (2000), pp. 173–201.
  • Ü. Ufuktepe and S. Kapçak, Applications of Discrete Dynamical Systems with Mathematica, Conference: RIMS, Vol. 1909, 2014.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • P. van den Driessche and A.-A. Yakubu, Demographic population cycles and R0 in discrete-time epidemic models, J. Biol. Dyn. 12(1) (2018), pp. 961–982.
  • P. van den Driessche and A.-A. Yakubu, Disease extinction versus persistence in discrete-time epidemic models, Bull. Math. Biol. 81 (2019), pp. 4412–4446.
  • W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett. 15 (2002), pp. 423–428.
  • C.L. Wesley and L.J.S. Allen, The basic reproduction number in epidemic models with periodic demographics, J. Biol. Dyn. 3(2–3) (2009), pp. 116–129. DOI:https://doi.org/10.1080/17513750802304893
  • S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Texts in Applied Mathematics, Vol. 2, Springer-Verlag, New York, 2003.
  • J. Zhao, M. Liu, W. Wang, and P. Yang, The stability of SI epidemic model in complex networks with Stochastic perturbation, Abstract Appl. Anal. 2014 (2014), pp. 610959. DOI:https://doi.org/10.1155/2014/610959. Article ID 14 pages.
  • N. Ziyadi and A.A. Yakubu, Local and global sensitivity analysis in a discrete-time SEIS epidemic model, Adv. Dyn. Syst. Appl. 11(1) (2016), pp. 15–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.