104
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhanced design and hardware implementation of a chaos-based block cipher for image protection

, , &
Pages 1408-1428 | Received 26 Oct 2021, Accepted 08 Apr 2022, Published online: 30 Apr 2022

References

  • A. Akhshani, A. Akhavan, S.C. Lim and Z. Hassan, An image encryption scheme based on quantum logistic map, Commun. Nonlin. Sci. Numer. Simul. 17 (2012), pp. 4653–4661.
  • L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel and D. Banks, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Natl Inst Stand Technol, 2010. Sp 800–22 rev.
  • S. Behnia, A. Akhshani, H. Mahmodi and A. Akhavan, A novel algorithm for image encryption based on mixture of chaotic maps, Chaos Solitons and Fractals. 35 (2008), pp. 408–419.
  • W.D. Chang, Digital secure communication via chaotic systems, Dig. Sign. Process. 19 (2009), pp. 693–699.
  • G. Chen, Y. Mao and C.K. Chui, A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos Solitons and Fractals. 21 (2004), pp. 749–761.
  • F. Chiaraluce, L. Ciccarelli, E. Gambi, P. Pierleoni and M. Reginelli, A new chaotic algorithm for video encryption, IEEE Trans. Consum. Electron. 48 (2022), pp. 838–844.
  • J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption standard, Information security and cryptography, Springer, 2002.
  • F. Dridi, S. El Assad, W. El Hadj Youssef, M. Machhout and R. Lozi, The design and FPGA-based implementation of a stream cipher based on a secure chaotic generator, Appl. Sci. 11(2) (2021), pp. 621.
  • S. El Assad, M. Farajallah and C. Vladeanu, Chaos-based block ciphers: An overview, 10th IEEE Int. Conf. Communications (COMM) (IEEE), (2014), pp. 1–4.
  • S. El Assad and H. Noura, Generator of chaotic sequences and corresponding generating system, US Patent App., 13/638. (2011), pp. 126.
  • M. Farajallah, S. El Assad and O. Déforges, Fast and secure chaos-based cryptosystem for images, Internat. J. Bifur. Chaos. 26(2) (2016), pp. 1650021.
  • J. Fridrich, Image encryption based on chaotic maps, IEEE Int. Conf. Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, (1997), pp. 1105–1110.
  • J. Fridrich, Symmetric ciphers based on two dimensional chaotic maps, Internat. J. Bifur. Chaos. 8 (1998), pp. 1259–1284.
  • T.G. Gao, Z.Q. Chen, Z.Z. Yuan and G.R. Chen, A hyperchaos generated from chens system, Internat. J. Modern Phys. C. 17(4) (2006), pp. 471–478.
  • D. Han, L. Min and G. Chen, A stream encryption scheme with both key and plaintext avalanche effects for designing chaos-based pseudorandom number generator with application to image encryption, Internat. J. Bifur. Chaos. 26(5) (2016), pp. 1650091.
  • A. Kassem, H. Al Haj Hassan, Y. Harkouss and R. Assaf, Efficient neural chaotic generator for image encryption, Commun. Nonlin. Sci. Numer. Simul. 25 (2014), pp. 266–274.
  • K. Lata and S. Saini, Hardware software co-simulation of an AES-128 based data encryption in image processing systems for the internet of things environment, IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly INiS), Vol. 2020, (2020), pp. 260–264.
  • Y.X. Li, G. Tang and W.K.S. Chen, Generating hyperchaos via state feedback control, Internat. J. Bifur. Chaos. 15(10) (2005), pp. 3367–3375.
  • S. Lian, J. Sun and Z. Wang, Security analysis of a chaos-based image encryption algorithm, Physica. A. 351 (2005), pp. 645–661.
  • S. Lian, J. Sun and Z. Wang, A chaotic stream cipher and the usage in video protection, Chaos Solit. Fract. 34 (2007), pp. 851–859.
  • E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), pp. 130–141.
  • E.N. Lorenz and K. Haman, The essence of chaos, Pure Appl. Geophys. 147 (1996), pp. 598–599.
  • R. Lozi, Emergence of randomness from chaos, Int. J. Bifurc. Chaos. 22 (2012), pp. 1250021.
  • M. Madani, I. Benkhaddra, C. Taougast, S. Chitroub and L. Sieler, Digital implementation of an improved LTE stream cipher SNOW-3G based on hyperchaotic PRNG, Secur. Commun. Netw. 2017 (2017), pp. 1–15.
  • M. Madani, I. Benkhaddra, C. Taougast, S. Chitroub and L. Sieler, FPGA implementation of an enhanced SNOW-3G stream cipher based on a hyper-chaotic system, The 4th International Conference on Control, Decision and Information Technologies (CoDIT'17), (2017), pp. 124–128.
  • M. Madani, S. Chitroub and C. Tanougast, Two KASUMI components for an optimal implementation of the A5/3 algorithm, The International Conference on Circuits, System and Simulation (ICCSS 2017), (2017), pp. 124–128.
  • M. Madani and C. Taougast, FPGA implementation of an optimized A5/3 encryption algorithm, Microprocess. Microsyst. 78 (2020), pp. 103212.
  • M. Madani and C. Taougast, Combined and robust SNOW-ZUC algorithm based on chaotic system, The International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2018), Glasgow, Scotland, UK June 11–12, 2018.
  • M. Madani and C. Taougast, FPGA implementation of an enhanced chaotic-KASUMI block cipher, Microprocess. Microsyst. 80 (2021), pp. 103644.
  • M. Madani and C. Taougast, Optimized and robust implementation of mobile networks confidentiality and integrity functions, Computers and Security. 100 (2021), pp. 102093.
  • Y. Mao, G. Chen and S. Lian, A novel fast image encryption scheme based on 3D chaotic baker maps, Internat. J. Bifur. Chaos. 14 (2004), pp. 3613–3624.
  • S.G. MEINTANIS and Z. HLÁVKA, Goodness-of-Fit tests for bivariate and multivariate skew-normal distributions, Scand. J. Statist. 37(4) (2010), pp. 701–714.
  • S. Nikolov and S. Clodong, Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified rossler hyperchaotic systems, Chaos Solitons and Fractals. 22 (2004), pp. 407–431.
  • X. Peng and Y. Zeng, Image encryption application in a system for compounding self-excited and hidden attractors, Chaos Solitons and Fractals. 139 (2020), pp. 110044.
  • O.E. Rössler, An equation for hyperchaos, Phys. Lett. A. 71 (1979), pp. 155–157.
  • J.L. Rodgers and A.W. Nicewander, Thirteen ways to look at the correlation coefficient, Am. Stat.42(1) (1988), pp. 59–66.
  • C.E. Shannon, Communication theory of secrecy systems, Bell. Labs. Tech. J. 28 (1949), pp. 656–715.
  • E. Solak, C. Cokal, O.T. Yildiz and T. Biyikoglu, Cryptanalysis of Fridrich's chaotic image encryption, Internat. J. Bifur. Chaos. 20 (2010), pp. 1405–1413.
  • X. Wang, D. Luan and X. Bao, Cryptanalysis of an image encryption algorithm using chebyshev generator, Dig. Sign. Process. 25 (2013), pp. 244–247.
  • K.W. Wong, B.S.H. Kwok and W.S. Law, A fast image encryption scheme based on chaotic standard map, Phys. Lett. A. 372 (2008), pp. 2645–2652.
  • Y. Wu, J.P. Noonan and S. Agaian, NPCR and UACI randomness tests for image encryption, CYber J. Multidiscip. J. Sci. Technol. Sel. Areas Telecommun. 1 (2011), pp. 31–38.
  • Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J.P. Noonan and P. Natarajan, Local shannon entropy measure with statistical tests for image randomness, Inf. Sci. 222 (2013), pp. 323–342.
  • F. Yu, H. Shen, Z. Zhang, Y. Huang, S. Cai and S. Du, A new multi-scroll Chua's circuit with composite hyperbolic tangent-cubic nonlinearity: complex dynamics, hardware implementation and image encryption application, Integration. 81 (2021), pp. 71–83.
  • W. Zhang, K.W. Wong, H. Yu and Z.L. Zhu, An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion, Commun. Nonlin. Sci. Numer. Simul. 18 (2013), pp. 2066–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.