60
Views
1
CrossRef citations to date
0
Altmetric
Articles

On target-oriented control of Hénon and Lozi maps

ORCID Icon & ORCID Icon
Pages 885-908 | Received 28 Oct 2021, Accepted 02 Jun 2022, Published online: 18 Jun 2022

References

  • J.A.D. Appleby, X. Mao, and A. Rodkina, On stochastic stabilization of difference equations, Dyn. Contin. Discrete Syst. 15(3) (2006), pp. 843–857.
  • L. Arosio, A.M. Benini, J.E. Fornæss, and H. Peters, Dynamics of transcendental Hénon maps, Math. Ann. 373(1–2) (2019), pp. 853–894.
  • K.J. Åström, Introduction to Stochastic Control Theory, Mathematics in Science and Engineering, Vol. 70, Academic Press, New York, 1970.
  • G. Berkolaiko, E. Buckwar, C. Kelly, and A. Rodkina, Almost sure asymptotic stability analysis of the θ-Maruyama method applied to a test system with a.s. stabilizing and destabilizing stochastic perturbations, LMS J. Comput. Math. 15 (2012), pp. 71–83.
  • G. Berkolaiko and A. Rodkina, Almost sure convergence of solutions to non-homogeneous stochastic difference equation, J. Differ. Equations Appl. 12 (2006), pp. 535–553.
  • E. Braverman and B. Chan, Stabilization of prescribed values and periodic orbits with regular and pulse target oriented control, Chaos 24(1) (2014), p. 013119.
  • E. Braverman and D. Franco, Stabilization with target oriented control for higher order difference equations, Phys. Lett. A 379(16) (2015), pp. 1102–1109.
  • E. Braverman and D. Franco, Stabilization of structured populations via vector target-oriented control, Bull. Math. Biol. 79 (2017), pp. 1759–1777.
  • E. Braverman, C. Kelly, and A. Rodkina, Stabilisation of difference equations with noisy prediction-based control, Phys. D 326 (2016), pp. 21–31.
  • E. Braverman, C. Kelly, and A. Rodkina, Stabilization of cycles with stochastic prediction-based and target-oriented control, Chaos 30 (2020), p. 15.
  • E. Braverman and A. Rodkina, Stabilization of difference equations with noisy proportional feedback control, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), pp. 2067–2088.
  • E. Braverman and A. Rodkina, Stochastic control stabilizing unstable or chaotic maps, J. Differ. Equ. Appl. 25 (2019), pp. 151–178.
  • E. Buckwar and C. Kelly, Towards of systematic linear stability analysis of numerical methods for systems of stochastic differential equations, SIAM J. Numer. Anal. 48(1) (2010), pp. 298–321.
  • P. Carmona and D. Franco, Control of chaotic behavior and prevention of extinction using constant proportional feedback, Nonlinear Anal. Real World Appl. 12 (2011), pp. 3719–3726.
  • P.L. Chesson, The stabilizing effect of a random environment, J. Math. Biol. 15(1) (1982), pp. 1–36.
  • J. Dattani, J.C. Blake, and F.M. Hilker, Target-oriented chaos control, Phys. Lett. A 375(45) (2011), pp. 3986–3992.
  • S.N. Elaydi, An Introduction to Difference Equations, 2nd ed. Springer, Berlin, 1999.
  • D. Franco and E. Liz, A two-parameter method for chaos control and targeting in one-dimensional maps, Int. J. Bifur. Chaos Appl. Sci. Eng. Int. 23(1) (2013), p. 1350003.
  • A. Gjurchinovski, T. Jungling, V. Urumov, and E. Schöll, Delayed feedback control of unstable steady states with high-frequency modulation of the delay, Phys. Rev. E. 88(3) (2013), p. 032912.
  • A. Gjurchinovski and V. Urumov, Stabilization of unstable steady states and unstable periodic orbits by feedback with variable delay, Romanian J. Phys. 58(1–2) (2013), pp. 36–49.
  • A. Gjurchinovski, A. Zakharova, and E. Schöll, Amplitude death in oscillator networks with variable-delay coupling, Phys. Rev. E. 89(3) (2014), p. 032915.
  • J. Güémez and M.A. Matías, Control of chaos in unidimensional maps, Phys. Lett. A181 (1993), pp. 29–32.
  • M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys. 50(1) (1976), pp. 69–77.
  • P. Hitczenko and G. Medvedev, Stability of equilibria of randomly perturbed maps, Discrete Contin. Dyn. Syst. Ser. B 22(2) (2017), pp. 269–281.
  • R. Khasminskii, Stochastic Stability of Differential Equations, 2nd ed., Stochastic Modelling and Applied Probability, Vol. 66, Springer, Heidelberg, 2012.
  • B. Leal and S. Muñoz, Hénon-Devaney like maps, Nonlinearity 34(5) (2021), pp. 2878–2896.
  • C.G. Lee and J. Silverman, GIT stability of Hénon maps, Proc. Amer. Math. Soc. 148(10) (2020), pp. 4263–4272.
  • H. Li, K. Li, M. Chen, B. Mo, and B. Bao, Coexisting infinite orbits in an area-preserving Lozi map, Entropy 22(10) (2020), 14 pp.
  • E. Liz, How to control chaotic behavior and population size with proportional feedback, Phys. Lett. A 374 (2010), pp. 725–728.
  • E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos 20 (2010), p. 023124.
  • E. Liz and C. Pötzsche, PBC-based pulse stabilization of periodic orbits, Phys. D 272 (2014), pp. 26–38.
  • R. Lozi, Un attracteur étrange (?) du type attracteur de Hénon, J. Physique (Paris) 39(8) (1978), pp. 9–10.
  • M. Lyubich and H. Peters, Structure of partially hyperbolic Hénon maps, J. Eur. Math. Soc. (JEMS) 23(9) (2021), pp. 3075–3128.
  • M. Misiurewicz and S. Štimac, Symbolic dynamics for Lozi maps, Nonlinearity 29(10) (2016), pp. 3031–3046.
  • E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990), pp. 1196–1199.
  • B.T. Polyak, Chaos stabilization by predictive control, Autom. Remote Control 66 (2005), pp. 1791–1804.
  • K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170 (1992), pp. 421–428.
  • E. Schöll and H.G. Schuster (Eds), Handbook of Chaos Control. Second edition, Wiley-VCH Verlag GmbH & Co, Weinheim, 2008.
  • S.J. Schreiber, Persistence for stochastic difference equations: A mini-review, J. Differ. Equations Appl. 18(8) (2012), pp. 1381–1403.
  • A.N. Shiryaev, Probability, 2nd ed. Springer, Berlin, 1996.
  • T. Ushio and S. Yamamoto, Prediction-based control of chaos, Phys. Lett. A 264 (1999), pp. 30–35.
  • M. Yampolsky and J. Yang, Structural instability of semi-Siegel Hénon maps, Adv. Math. 389 (2021), 36 pp.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.