159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A higher order implicit adaptive finite point method for the Burgers' equation

, &
Pages 235-269 | Received 31 Dec 2021, Accepted 19 Aug 2022, Published online: 06 Apr 2023

References

  • E.N. Aksan, A numerical solution of Burgers' equation by finite element method constructed on the method of discretization in time, Appl. Math. Comput. 170(2) (2005), pp. 895–904.
  • E.N. Aksan, Quadratic b-spline finite element method for numerical solution of the Burgers' equation, Appl. Math. Comput. 174(2) (2006), pp. 884–896.
  • G. Arora and B.K. Singh, Numerical solution of Burgers' equation with modified cubic b-spline differential quadrature method, Appl. Math. Comput. 224 (2013), pp. 166–177.
  • A. Asaithambi, Numerical solution of the Burgers' equation by automatic differentiation, Appl. Math. Comput. 216(9) (2010), pp. 2700–2708.
  • V.S. Aswin, A. Awasthi, and M.M. Rashidi, A differential quadrature based numerical method for highly accurate solutions of Burgers' equation, Numer. Methods. Partial. Differ. Equ. 33(6) (2017), pp. 2023–2042.
  • S.V. Bogomolov, M.A. Filippova, and A.E. Kuvshinnikov, A discontinuous particle method for the inviscid Burgers' equation, in Journal of Physics: Conference Series, Vol. 1715, IOP Publishing, 2021, pp. 012–066.
  • A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods. Appl. Mech. Eng. 32(1-3) (1982), pp. 199–259.
  • D.P. Clemence-Mkhope, V.P. Rabeeb Ali, and A. Awasthi, Non-standard finite difference based numerical method for viscous Burgers' equation, Int. J. Appl. Comput. Math. 6(6) (2020), pp. 1–18.
  • J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9(3) (1951), pp. 225–236.
  • A. Cordero, A. Franques, and J.R. Torregrosa, Numerical solution of turbulence problems by solving Burgers' equation, Algorithms 8(2) (2015), pp. 224–233.
  • A. Dogan, A Galerkin finite element approach to Burgers' equation, Appl. Math. Comput. 157(2) (2004), pp. 331–346.
  • Y. Duan, R. Liu, and Y. Jiang, Lattice Boltzmann model for the modified Burgers' equation, Appl. Math. Comput. 202(2) (2008), pp. 489–497.
  • F. Gao and C. Chi, Numerical solution of nonlinear Burgers' equation using high accuracy multi-quadric quasi-interpolation, Appl. Math. Comput. 229 (2014), pp. 414–421.
  • Y. Gao, L.-H. Le, and B.-C. Shi, Numerical solution of Burgers' equation by lattice boltzmann method, Appl. Math. Comput. 219(14) (2013), pp. 7685–7692.
  • S. Gowrisankar and S. Natesan, An efficient robust numerical method for singularly perturbed Burgers' equation, Appl. Math. Comput. 346 (2019), pp. 385–394.
  • H. Han and Z. Huang, A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium, J. Comput. Math. 26 (2008), pp. 728–739.
  • H. Han and Z. Huang, Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions, J. Sci. Comput. 41(2) (2009), pp. 200–220.
  • H. Han and Z. Huang, Tailored finite point method for steady-state reaction-diffusion equations, Commun. Math. Sci. 8(4) (2010), pp. 887–899.
  • H. Han, Z. Huang, and R.B. Kellogg, The tailored finite point method and a problem of P. Hemker, in Proceedings of the International Conference on Boundary and Interior Layers–Computational and Asymptotic Methods, Limerick, Citeseer, 2008.
  • H. Han, Z. Huang, and R.B. Kellogg, A tailored finite point method for a singular perturbation problem on an unbounded domain, J. Sci. Comput. 36(2) (2008), pp. 243–261.
  • H. Han, Z. Huang, and W. Ying, A semi-discrete tailored finite point method for a class of anisotropic diffusion problems, Comput. & Math. Appl. 65(11) (2013), pp. 1760–1774.
  • H. Han, J.J.H. Miller, and M. Tang, A parameter-uniform tailored finite point method for singularly perturbed linear ode systems, J. Comput. Math. 31(4) (2013), pp. 422–438.
  • H. Han, M. Tang, and W. Ying, Two uniform tailored finite point schemes for the two dimensional discrete ordinates transport equations with boundary and interface layers, Commun. Comput. Phys.15(3) (2014), pp. 797–826.
  • A. Hashemian and H.M. Shodja, A meshless approach for solution of Burgers' equation, J. Comput. Appl. Math. 220(1-2) (2008), pp. 226–239.
  • I.A. Hassanien, A.A. Salama, and H.A. Hosham, Fourth-order finite difference method for solving Burgers' equation, Appl. Math. Comput. 170(2) (2005), pp. 781–800.
  • P.-W. Hsieh, Y. Shih, and S.-Y. Yang, A tailored finite point method for solving steady MHD duct flow problems with boundary layers, Commun. Comput. Phys. 10(1) (2011), pp. 161–182.
  • Z. Huang, Tailored finite point method for the interface problem, Networks & Heterogeneous Media4(1) (2009), pp. 91–106.
  • Z. Huang and X. Yang, Tailored finite point method for first order wave equation, J. Sci. Comput.49(3) (2011), pp. 351–366.
  • Z. Huang and X. Yang, Tailored finite cell method for solving Helmholtz equation in layered heterogeneous medium, J. Comput. Math. 30(4) (2012), pp. 381–391.
  • M. Hussain, Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers' equation, Comput. Appl. Math. 40(1) (2021), pp. 1–49.
  • M. Inc, On numerical solution of Burgers' equation by homotopy analysis method, Phys. Lett. A372(4) (2008), pp. 356–360.
  • S.R. Jena and G.S. Gebremedhin, Decatic b-spline collocation scheme for approximate solution of Burgers' equation, Numer. Methods. Partial. Differ. Equ. 39(3) (2021), pp. 1851–1869.
  • Y. Jiao, A novel spectral method for Burgers equation on the real line, East. Asian. J. Appl. Math.10(3) (2020), pp. 532–548.
  • M.K. Kadalbajoo and A. Awasthi, A numerical method based on Crank-Nicolson scheme for Burgers' equation, Appl. Math. Comput. 182(2) (2006), pp. 1430–1442.
  • M.K. Kadalbajoo, K.K. Sharma, and A. Awasthi, A parameter-uniform implicit difference scheme for solving time-dependent Burgers' equations, Appl. Math. Comput. 170(2) (2005), pp. 1365–1393.
  • R. Kaur, V.K. Kukreja, N. Parumasur, and P. Singh, Two different temporal domain integration schemes combined with compact finite difference method to solve modified Burgers' equation, Ain Shams Eng. J. 13(1) (2021), pp. 101507.
  • S. Kutluay, A.R. Bahadir, and A. Özdeş, Numerical solution of one-dimensional Burgers equation: Explicit and exact-explicit finite difference methods, J. Comput. Appl. Math. 103(2) (1999), pp. 251–261.
  • S. Kutluay, A. Esen, and I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic b-spline finite element method, J. Comput. Appl. Math. 167(1) (2004), pp. 21–33.
  • M. Li, L. Chen, and Q. Ma, A meshfree quasi-interpolation method for solving Burgers' equation, Math. Prob. Eng. 2014 (2014), pp. 492072.
  • Z.-P. Li and Y.-C. Liu, Analysis of stability and density waves of traffic flow model in an its environment, Eur. Phys. J. B-Condensed Matter Complex Syst. 53(3) (2006), pp. 367–374.
  • R.E. Mickens, A finite difference scheme for traveling wave solutions to Burgers equation, Numer. Methods Partial Differ. Equ: An Int. J. 14(6) (1998), pp. 815–820.
  • R.E. Mickens, A nonstandard finite difference scheme for the diffusionless Burgers equation with logistic reaction, Math. Comput. Simul. 62(1-2) (2003), pp. 117–124.
  • R.C. Mittal and R.K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic b-splines collocation method, Appl. Math. Comput. 218(15) (2012), pp. 7839–7855.
  • R.C. Mittal and R. Jiwari, A differential quadrature method for numerical solutions of Burgers'-type equations, Int. J. Numer. Methods Heat & Fluid Flow 22(7) (2012), pp. 880–895.
  • R.C. Mittal and R. Rohila, A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method, J. Math. Chem. 55(2) (2017), pp. 673–695.
  • R. Mokhtari, A.S. Toodar, and N.G. Chegini, Application of the generalized differential quadrature method in solving Burgers' equations, Commun. Theor. Phys. 56(6) (2011), pp. 1009–1015.
  • V. Mukundan and A. Awasthi, Efficient numerical techniques for Burgers' equation, Appl. Math. Comput. 262 (2015), pp. 282–297.
  • V. Mukundan and A. Awasthi, Linearized implicit numerical method for Burgers' equation, Nonlinear Eng. 5(4) (2016), pp. 219–234.
  • T. Musha and H. Higuchi, The 1/f fluctuation of a traffic current on an expressway, Jpn. J. Appl. Phys. 15(7) (1976), pp. 1271–1275.
  • T. Musha and H. Higuchi, Traffic current fluctuation and the Burgers equation, Jpn. J. Appl. Phys.17(5) (1978), pp. 811–816.
  • T. Nagatani, H. Emmerich, and K. Nakanishi, Burgers equation for kinetic clustering in traffic flow, Phys. A: Stat. Mech. Appl. 255(1-2) (1998), pp. 158–162.
  • K. Pandey, L. Verma, and A.K. Verma, On a finite difference scheme for Burgers' equation, Appl. Math. Comput. 215(6) (2009), pp. 2206–2214.
  • C.S. Rao and E. Satyanarayana, Solutions of Burgers equation, Int. J. Nonlinear Sci. 9(3) (2010), pp. 290–295.
  • K.R. Raslan, A collocation solution for Burgers equation using quadratic b-spline finite elements, Int. J. Comput. Math. 80(7) (2003), pp. 931–938.
  • M. Seydaoğlu, A meshless method for Burgers' equation using multiquadric radial basis functions with a lie-group integrator, Mathematics 7(2) (2019), pp. 113.
  • Y. Shih, R.B. Kellogg, and P. Tsai, A tailored finite point method for convection-diffusion-reaction problems, J. Sci. Comput. 43(2) (2010), pp. 239–260.
  • V.P. Shyaman, A. Sreelakshmi, and A. Awasthi, An adaptive tailored finite point method for the generalized Burgers' equations, J. Comput. Sci. 62 (2022), pp. 101744.
  • A.A. Soliman, A Galerkin solution for Burgers' equation using cubic b-spline finite elements. In Abstract and Applied Analysis, Vol. 2012, Hindawi, 2012.
  • C.-C. Tsai, Y.-T. Shih, Y.-T. Lin, and H.-C. Wang, Tailored finite point method for solving one-dimensional Burgers' equation, Int. J. Comput. Math. 94(4) (2017), pp. 800–812.
  • Y. Wu and X. Wu, Linearized and rational approximation method for solving non-linear Burgers' equation, Int. J. Numer. Methods. Fluids. 45(5) (2004), pp. 509–525.
  • S.-S. Xie, S. Heo, S. Kim, G. Woo, and S. Yi, Numerical solution of one-dimensional Burgers' equation using reproducing kernel function, J. Comput. Appl. Math. 214(2) (2008), pp. 417–434.
  • X. Yang, Y. Ge, and L. Zhang, A class of high-order compact difference schemes for solving the Burgers' equations, Appl. Math. Comput. 358 (2019), pp. 343–358.
  • W. Yang, Z. Huang, and W. Zhu, An efficient tailored finite point method for rician denoising and deblurring, Commun. Comput. Phys. 24 (2018), pp. 1169–1195.
  • L. Yang and X. Pu, Derivation of the Burgers' equation from the gas dynamics, Commun. Math. Sci.14(3) (2016), pp. 671–682.
  • J. Yepez, Quantum lattice-gas model for the Burgers equation, J. Stat. Phys. 107(1/2) (2002), pp. 203–224.
  • P.-G. Zhang and J.-P. Wang, A predictor–corrector compact finite difference scheme for Burgers' equation, Appl. Math. Comput. 219(3) (2012), pp. 892–898.
  • L. Zhang, L. Wang, and X. Ding, Exact finite difference scheme and nonstandard finite difference scheme for Burgers and Burgers-fisher equations, J. Appl. Math. 2014 (2014), pp. 597926.
  • J. Zhao, H. Li, Z. Fang, and X. Bai, Numerical solution of Burgers' equation based on mixed finite volume element methods, Discrete. Dyn. Nat. Soc. 2020 (2020), pp. 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.