112
Views
3
CrossRef citations to date
0
Altmetric
Articles

Right fractional calculus to inverse-time chaotic maps and asymptotic stability analysis

ORCID Icon, &
Pages 1140-1155 | Received 01 Nov 2022, Accepted 15 Mar 2023, Published online: 20 Apr 2023

References

  • T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), pp. 1602–1611.
  • T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Differ. Equ.2013 (2013), p. Article ID. 36, 16pp.
  • T. Abdeljawad and F.M. Atici, On the definition of Nabla fractional operators, Abstr. Appl. Anal.2012 (2012), p. Artical ID 406757, 13pp.
  • T. Abdeljawad, S. Banerjee, and G.C. Wu, Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption, Optik 203 (2020), p. 163698.
  • R. Abu-Saris and Q. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations, Fract. Calc. Appl. Anal. 16 (2013), pp. 613–629.
  • F.M. Atici and P.W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), pp. 981–989.
  • J. Cermak, I. Gyori, and L. Nechvatal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal. 18 (2105), pp. 651–672.
  • F. Du and B. Jia, Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett. 98 (2019), pp. 233–239.
  • J.S. Duan, L. Lu, L. Chen, and Y.L. An, Fractional model and solution for the Black–Scholes equation, Math. Method. Appl. Sci. 41 (2018), pp. 697–704.
  • S.N. Elaydi, Discrete Chaos, Chapman and Hall/CRC, New York, 2007.
  • H. Fu, L.L. Huang, T. Abdeljawad, and C. Luo, Tempered fractional calculus on time scale for discrete-time systems, Fractals 29 (2021), p. 2140033.
  • C. Goodrich and A.C. Peterson, Discrete Fractional Calculus, Springer, 2015.
  • C.Y. Gu, G.C. Wu, and B. Shiri, An inverse problem approach to determine possible memory length of fractional differential equations, Fract. Calc. Appl. Anal 24 (2021), pp. 1919–1936.
  • Y.J. Gu, H. Wang, and Y. Yu, Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput. 372 (2020), p. 124995.
  • M.T. Holm, The Laplace transform in discrete fractional calculus, Comput. Math. Appl. 62 (2011), pp. 1591–1601.
  • L.L. Huang, G.C. Wu, D. Baleanu, and H.Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Set. Syst. 404 (2020), pp. 141–158.
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
  • Z.Y. Liu, T. Xia, and J. Wang, Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes–Vanstone elliptic curve cryptosystem, Chin. Phys. B 27 (2018), p. 030502.
  • C. Luo, B.Q. Liu, and H.S. Hou, Fractional chaotic maps with q-deformation, Appl. Math. Comput.393 (2021), p. 125759.
  • M.L. Morgado and M. Rebelo, Well-posedness and numerical approximation of tempered fractional terminal value problems, Fract. Calc. Appl. Anal. 20 (2017), pp. 1239–1262.
  • D. Mozyrska and M. Wyrwas, The Z-transform method and delta type fractional difference operators, Discr. Dyn. Nat. Soc. 2015 (2015), p. 852734.
  • B. Shiri, G.C. Wu, and D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math. 170 (2021), pp. 162–178.
  • T.T. Song, G.C. Wu, and J.L. Wei, Hadamard fractional calculus on time scales, Fractals 30 (2022), p. 2250145.
  • Y.P. Wang, X. Li, D. Wang, and S. Liu, A brief note on fractal dynamics of fractional Mandelbrot sets, Appl. Math. Comput. 432 (2022), p. 127353.
  • Z. Wang, B. Shiri, and D. Baleanu, Discrete fractional watermark technique, Front. Infor. Tech. Electr. Engr. 21 (2020), pp. 880–883.
  • G.C. Wu and D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn. 75 (2014), pp. 283–287.
  • G.C. Wu, D. Baleanu, H.P. Xie, and F.L. Chen, Chaos synchronization of fractional chaotic maps based on stability results, Phys. A. 460 (2016), pp. 374–383.
  • G.C. Wu, M. Cankaya, and S. Banerjee, Fractional q-chaotic maps: A weight function approach, Chaos12 (2020), p. 112106.
  • G.C. Wu, Z.G. Deng, D. Baleanu, and D.Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos 29 (2019), p. 083103.
  • G.C. Wu, B. Shiri, Q. Fan, and H.R. Feng, Terminal value problems of non-homogeneous fractional linear systems with general memory kernels, J, Nonlinear Math. Phys. (2022). DOI: 10.1007/s44198-022-00085-2
  • G.C. Wu, T.T. Song, and S.Q. Wang, Caputo-Hadamard fractional differential equation on time scales: Numerical scheme, stability, and chaos, Chaos 32 (2022), p. 093143.
  • X.L. Zhang, H.L. Li, Y. Kao, L. Zhang, and H. Jiang, Global Mittag–Leffler synchronization of discrete-time fractional-order neural networks with time delays, Appl. Math. Comput. 433 (2022), p. 127417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.