96
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evolution of dispersal by memory and learning in integrodifference equation models

, &
Pages 1040-1061 | Received 16 May 2023, Accepted 15 Sep 2023, Published online: 11 Oct 2023

References

  • M.V. Abrahams, Foraging guppies and the ideal free distribution: the influence of information on patch choice, Ethology 82(2) (2010), pp. 116–126.
  • B. Abrahms, E.L. Hazen, E.O. Aikens, M.S. Savoca, J.A. Goldbogen, S.J. Bograd, M.G. Jacox, L.M. Irvine, D.M. Palacios, and B.R. Mate, Memory and resource tracking drive blue whale migrations, Proc. Natl. Acad. Sci. 116(12) (2019), pp. 5582–5587.
  • I. Averill, Y. Lou, and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dyn.6(2) (2012), pp. 117–130.
  • G. BEAUCHAMP, Learning rules for social foragers: implications for the producer–scrounger game and ideal free distribution theory, J. Theor. Biol. 207(1) (2000), pp. 21–35.
  • H. Berestycki and J. Fang, Forced waves of the Fisher–KPP equation in a shifting environment, J. Differ. Equ. 264(3) (2018), pp. 2157–2183.
  • H. Berestycki, O. Diekmann, C.J. Nagelkerke, and P.A. Zegeling, Can a species keep pace with a shifting climate? Bull. Math. Biol. 71(2) (2009), pp. 399–429.
  • T. Boulinier and E. Danchin, The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species, Evol. Ecol. 11(5) (1997), pp. 505–517.
  • C. Bracis and T. Mueller, Memory, not just perception, plays an important role in terrestrial mammalian migration, Proc. R. Soc. B: Biol. Sci. 284(1855) (2017), pp. 20170449.
  • R.S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng. 7(1) (2010), pp. 17–36.
  • R.S. Cantrell, C. Cosner, Y. Lou, and S.J. Schreiber, Evolution of natal dispersal in spatially heterogenous environments, Math. Biosci. 283 (2017), pp. 136–144.
  • R.S. Cantrell, C. Cosner, and K.-Y. Lam, Ideal free dispersal under general spatial heterogeneity and time periodicity, SIAM. J. Appl. Math. 81(3) (2021), pp. 789–813.
  • R.S. Cantrell, C. Cosner, and Y. Zhou, Ideal free dispersal in integrodifference models, J. Math. Biol.85(1) (2022), pp. 6.
  • C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst. 34(5) (2014), pp. 1701–1745.
  • C. Cosner, J. Dávila, and S. Martínez, Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn. 6(2) (2012), pp. 395–405.
  • E. Danchin, T. Boulinier, and M. Massot, Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality, Ecology 79(7) (1998), pp. 2415–2428.
  • J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol. 37(1) (1998), pp. 61–83.
  • B. Doligez, E. Danchin, J. Clobert, and L. Gustafsson, The use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher, J. Anim. Ecol. 68(6) (1999), pp. 1193–1206.
  • B. Doligez, C. Cadet, E. Danchin, and T. Boulinier, When to use public information for breeding habitat selection? The role of environmental predictability and density dependence, Anim. Behav. 66(5) (2003), pp. 973–988.
  • B. Doligez, T. Pärt, E. Danchin, J. Clobert, and L. Gustafsson, Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher, J. Anim. Ecol.73(1) (2004), pp. 75–87.
  • H. Dreisig, Ideal free distributions of nectar foraging bumblebees, Oikos 72(2) (1995), pp. 161–172.
  • W.F. Fagan, R.S. Cantrell, C. Cosner, T. Mueller, and A.E. Noble, Leadership, social learning, and the maintenance (or collapse) of migratory populations, Theor. Ecol. 5(2) (2012), pp. 253–264.
  • W.F. Fagan, M.A. Lewis, M. Auger-Méthé, T. Avgar, S. Benhamou, G. Breed, L. LaDage, U.E. Schlägel, W.W. Tang, Y.P. Papastamatiou, and J. Forester, Spatial memory and animal movement, Ecol. Lett. 16(10) (2013), pp. 1316–1329.
  • S.D. Fretwell, Populations in a seasonal environment, Monogr. Pop. Biol. 5 (1972), pp. 16–36.
  • B.D Gerber, M.B. Hooten, C.P. Peck, M.B. Rice, J.H. Gammonley, A.D. Apa, and A.J. Davis, Extreme site fidelity as an optimal strategy in an unpredictable and homogeneous environment, Funct. Ecol.33(9) (2019), pp. 1695–1707.
  • E. Gurarie, S. Potluri, G. Christopher Cosner, R.S. Cantrell, and W.F. Fagan, Memories of migrations past: sociality and cognition in dynamic, seasonal environments, Front. Ecol. Evol. 1 (2021), pp. 647.
  • A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24(3) (1983), pp. 244–251.
  • R.D. Holt, Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol. 28(2) (1985), pp. 181–208.
  • L. Korobenko and E. Braverman, On evolutionary stability of carrying capacity driven dispersal in competition with regularly diffusing populations, J. Math. Biol. 69(5) (2014), pp. 1181–1206.
  • M.A. Lewis, N.G. Marculis, and Z. Shen, Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics, J. Math. Biol. 77(6-7) (2018), pp. 1649–1687.
  • H.-Y Lin, W.F. Fagan, and P.-E. Jabin, Memory-driven movement model for periodic migrations, J. Theor. Biol. 508 (2021), pp. 110486.
  • S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds. i. theoretical development, Acta. Biotheor. 19 (1970), pp. 16–36.
  • S. Matsumura, R. Arlinghaus, and U. Dieckmann, Foraging on spatially distributed resources with sub-optimal movement, imperfect information, and travelling costs: departures from the ideal free distribution, Oikos 119(9) (2010), pp. 1469–1483.
  • M.A. McPeek and R.D. Holt, The evolution of dispersal in spatially and temporally varying environments, Am. Nat. 140(6) (1992), pp. 1010–1027.
  • J.F.S. Menezes, Marginal value theorem as a special case of the ideal free distribution, Ecol. Modell.468 (2022), pp. 109933.
  • J.A. Merkle, H. Sawyer, K.L. Monteith, S.P.H. Dwinnell, G.L. Fralick, and M.J. Kauffman, Spatial memory shapes migration and its benefits: evidence from a large herbivore, Ecol. Lett. 22(11) (2019), pp. 1797–1805.
  • T.A. Morrison, J.A. Merkle, J.G.C. Hopcraft, E.O. Aikens, J.L. Beck, R.B. Boone, A.B. Courtemanch, S.P. Dwinnell, W.S. Fairbanks, B. Griffith, and A.D. Middleton, Drivers of site fidelity in ungulates, J. Anim. Ecol. 90(4) (2021), pp. 955–966.
  • A.B. Potapov and M.A. Lewis, Climate and competition: the effect of moving range boundaries on habitat invasibility, Bull. Math. Biol. 66(5) (2004), pp. 975–1008.
  • J. Shi, C. Wang, and H. Wang, Diffusive spatial movement with memory and maturation delays, Nonlinearity 32(9) (2019), pp. 3188–3208.
  • J. Shi, C. Wang, H. Wang, and X. Yan, Diffusive spatial movement with memory, J. Dyn. Differ. Equ.32(2) (2020), pp. 979–1002.
  • Q. Shi, J. Shi, and H. Wang, Spatial movement with distributed memory, J. Math. Biol. 82(4) (2021), pp. 33.
  • Y. Song, J. Shi, and H. Wang, Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory, Stud. Appl. Math. 148(1) (2022), pp. 373–395.
  • P.V. Switzer, Past reproductive success affects future habitat selection, Behav. Ecol. Sociobiol. 40(5) (1997), pp. 307–312.
  • Y. Zhou, Range shifts under constant-speed and accelerated climate warming, Bull. Math. Biol. 84(1) (2022), pp. 1.
  • Y. Zhou and M. Kot, Discrete-time growth-dispersal models with shifting species ranges, Theor. Ecol.4(1) (2011), pp. 13–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.