89
Views
0
CrossRef citations to date
0
Altmetric
Articles

Examining the influence of prey dynamics on predator–prey interactions

, &
Pages 1194-1221 | Received 12 Jul 2023, Accepted 28 Mar 2024, Published online: 18 Apr 2024

References

  • A.S. Ackleh and R.A. Chiquet, The global dynamics of a discrete juvenile–adult model with continuous and seasonal reproduction, J. Biol. Dyn. 3(2-3) (2009), pp. 101–115.
  • A.S. Ackleh and P. De Leenheer, Discrete three-stage population model: persistence and global stability results, J. Biol. Dyn. 2(4) (2008), pp. 415–427.
  • A.S. Ackleh, M.I. Hossain, A. Veprauskas, and A. Zhang, Persistence and stability analysis of discrete-time predator–prey models: a study of population and evolutionary dynamics, J. Differ. Equ. Appl. 25(11) (2019), pp. 1568–1603.
  • A.S. Ackleh, M.I. Hossain, A. Veprauskas, and A. Zhang, Long-term dynamics of discrete-time predator–prey models: stability of equilibria, cycles and chaos, J. Differ. Equ. Appl. 26(5) (2020), pp. 693–726.
  • A.S. Ackleh, M.I. Hossain, A. Veprauskas, and A. Zhang, Persistence of a discrete-time predator-prey model with stage-structure in the predator, in Progress on Difference Equations and Discrete Dynamical Systems: 25th ICDEA, London, UK, June 24–28, 2019, 25, Springer, 2020, pp. 145–163.
  • A.S. Ackleh, P. Salceanu, and A. Veprauskas, A nullcline approach to global stability in discrete-time predator–prey models, J. Differ. Equ. Appl. 27(8) (2021), pp. 1120–1133.
  • A.S. Ackleh and A. Veprauskas, Frequency-dependent evolution in a predator–prey system, Nat. Resour. Model. 34(3) (2021), pp. e12308.
  • L.J. Allen, An Introduction to Mathematical Biology, Pearson Prentice Hall, Upper Saddle River, NJ, 2007.
  • B. Blasius, L. Rudolf, G. Weithoff, U. Gaedke, and G.F. Fussmann, Long-term cyclic persistence in an experimental predator–prey system, Nature 577(7789) (2020), pp. 226–230.
  • H. Caswell, Matrix Population Models, Vol. 1, Sinauer, Sunderland, MA, 2000.
  • K.L. Cooke, R.H. Elderkin, and W. Huang, Predator-prey interactions with delays due to juvenile maturation, SIAM. J. Appl. Math. 66(3) (2006), pp. 1050–1079.
  • J. Cushing and S.M. Stump, Darwinian dynamics of a juvenile-adult model, Dynamics 30(32) (2013), pp. 33.
  • J.M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Providence, RI, 1998.
  • J.M. Cushing, Chaos in Ecology: Experimental Nonlinear Dynamics, Vol. 1, Elsevier, San Diego, CA, 2003.
  • J.M. Cushing and S.M. Henson, Stable bifurcations in semelparous leslie models, J. Biol. Dyn. 6(sup2) (2012), pp. 80–102.
  • J.M. Cushing and Z. Yicang, The net reproductive value and stability in matrix population models, Nat. Resour. Model. 8(4) (1994), pp. 297–333.
  • E. D'Aniello and S. Elaydi, The structure of omega-limit sets of asymptotically non-autonomous discrete dynamical systems, Discrete & Contin. Dyn. Syst.-B 25(3) (2020), pp. 903.
  • O. Diekmann and R. Planqué, The winner takes it all: how semelparous insects can become periodical, J. Math. Biol. 80(1-2) (2020), pp. 283–301.
  • L. Fei, X. Chen, and B. Han, Bifurcation analysis and hybrid control of a discrete-time predator–prey model, J. Differ. Equ. Appl. 27(1) (2021), pp. 102–117.
  • D.C. Franklin, Synchrony and asynchrony: observations and hypotheses for the flowering wave in a long-lived semelparous bamboo, J. Biogeogr. 31(5) (2004), pp. 773–786.
  • S.A. Gourley and Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol. 49(2) (2004), pp. 188–200.
  • N. Holmengen and K.L. Seip, Cycle lengths and phase portrait characteristics as probes for predator–prey interactions: comparing simulations and observed data, Can. J. Zool. 87(1) (2009), pp. 20–30.
  • C.B. Huffaker, Experimental studies on predation: dispersion factors and predator-prey oscillations, Hilgardia 27(14) (1958), pp. 343–383.
  • Y. Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to allee effects, J. Differ. Equ. Appl. 22(5) (2016), pp. 687–723.
  • S. Kirkland, C.K. Li, and S.J. Schreiber, On the evolution of dispersal in patchy landscapes, SIAM. J. Appl. Math. 66(4) (2006), pp. 1366–1382.
  • R. Kon, Nonexistence of synchronous orbits and class coexistence in matrix population models, SIAM. J. Appl. Math. 66(2) (2005), pp. 616–626.
  • G.L. Loppnow and P.A. Venturelli, Stage-structured simulations suggest that removing young of the year is an effective method for controlling invasive smallmouth bass, Trans. Am. Fish. Soc. 143(5) (2014), pp. 1341–1347.
  • L.S. Luckinbill, Coexistence in laboratory populations of paramecium aurelia and its predator didinium nasutum, Ecology 54(6) (1973), pp. 1320–1327.
  • K. Marcinko and M. Kot, A comparative analysis of host–parasitoid models with density dependence preceding parasitism, J. Biol. Dyn. 14(1) (2020), pp. 479–514.
  • E.P. Meissen, Invading a structured population: A bifurcation approach, Ph.D. diss., The University of Arizona, 2017.
  • T.E. Miller and V.H. Rudolf, Thinking inside the box: community-level consequences of stage-structured populations, Trends. Ecol. Evol. (Amst.) 26(9) (2011), pp. 457–466.
  • K. Mokni, S. Elaydi, M. Ch-Chaoui, and A. Eladdadi, Discrete evolutionary population models: a new approach, J. Biol. Dyn. 14(1) (2020), pp. 454–478.
  • N. Nyumura and T. Asami, Synchronous and non-synchronous semelparity in sibling species of pulmonates, Zool. Sci. 32(4) (2015), pp. 372–377.
  • A. de Roos, L. Persson, and H.R. Thieme, Emergent allee effects in top predators feeding on structured prey populations, Proc. R. Soc. Lond. Ser. B Biol. Sci. 270(1515) (2003), pp. 611–618.
  • A.M. de Roos, Dynamic population stage structure due to juvenile–adult asymmetry stabilizes complex ecological communities, Proc. Natl. Acad. Sci. 118(21) (2021), pp. e2023709.
  • V. Rudolf and K.D. Lafferty, Stage structure alters how complexity affects stability of ecological networks, Ecol. Lett. 14(1) (2011), pp. 75–79.
  • P.L. Salceanu and H.L. Smith, Lyapunov exponents and persistence in discrete dynamical systems, Discrete Contin. Dyn. Syst. Ser. B 12(1) (2009), pp. 187–203.
  • F.S. Scharf, F. Juanes, and R.A. Rountree, Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth, Mar. Ecol. Prog. Ser. 208 (2000), pp. 229–248.
  • R.V. Sharpe and L. Aviles, Prey size and scramble vs. contest competition in a social spider: implications for population dynamics, J. Anim. Ecol. 85(5) (2016), pp. 1401–1410.
  • N.C. Stenseth, D. Ehrich, E.K. Rueness, O.C. Lingjærde, K.S. Chan, S. Boutin, M. O'Donoghue, D.A. Robinson, H. Viljugrein, and K.S. Jakobsen, The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx, Proc. Natl. Acad. Sci. 101(16) (2004), pp. 6056–6061.
  • E.E. Werner and J.F. Gilliam, The ontogenetic niche and species interactions in size-structured populations, Annu. Rev. Ecol. Syst. 15(1) (1984), pp. 393–425.
  • A.A. Yakubu, Two-patch dispersal-linked compensatory-overcompensatory spatially discrete population models, J. Biol. Dyn. 1(2) (2007), pp. 157–182.
  • E.F. Zipkin, C.E. Kraft, E.G. Cooch, and P.J. Sullivan, When can efforts to control nuisance and invasive species backfire?, Ecol. Appl. 19(6) (2009), pp. 1585–1595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.