192
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Neustonic tadpoles do not detect and respond to insect predator

ORCID Icon, ORCID Icon &
Pages 131-143 | Received 27 Apr 2022, Accepted 09 Oct 2022, Published online: 19 Oct 2022

References

  • Batabyal A, Gosavi SM, Gramapurohit NP. 2014. Determining sensitive stages for learning to detect predators in larval bronzed frogs: importance of alarm cues in learning. J Biosci. 39(4):701–710. doi:10.1007/s12038-014-9455-7.
  • Benard MF. 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst. 35(1):651–673. doi:10.1146/annurev.ecolsys.35.021004.112426.
  • Bennett AM, Longhi JN, Chin EH, Burness G, Kerr LR, Murray DL. 2016. Acute changes in whole body corticosterone in response to perceived predation risk: a mechanism for antipredator behavior in anurans? Gen Comp Endocrinol. 229:62–66. doi:10.1016/j.ygcen.2016.02.024.
  • Chivers DP, Smith RJF. 1998. Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience. 5(3):338–352. doi:10.1080/11956860.1998.11682471.
  • Crespi EJ, Denver RJ. 2005. Roles of stress hormones in food intake regulation in anuran amphibians throughout the life cycle. Comp Biochem Physiol. 141(4):381–390. doi:10.1016/j.cbpb.2004.12.007.
  • Crespi EJ, Williams TD, Jessop TS, Delehanty B, Boonstra R. 2013. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct Ecol. 27(1):93–106. doi:10.1111/1365-2435.12009.
  • Dash MC, Dei C. 1996. Crowding effect on growth and metamorphosis of the frog Microhyla ornata (Dumeril and Bibron). Curr Sci. 70:406–408.
  • Davis DR, Epp KJ, Gabor CR, Ebensperger L. 2012. Predator generalization decreases the effect of introduced predators in the San Marcos Salamander, Eurycea nana. Ethology. 118(12):1191–1197. doi:10.1111/eth.12025.
  • de Sá RO, Streicher JW, Sekonyela R, Forlani MC, Loader, Greenbaum E, Richards S, Haddad CFB, Loader SP. 2012. Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among new world genera. BMC Evol Biol. 12(1):241. doi:10.1186/1471-2148-12-241.
  • DeVito J. 2003. Metamorphic synchrony and aggregation as antipredator responses in American toads. Oikos. 103(1):75–80. doi:10.1034/j.1600-0706.2003.12527.x.
  • Dijk B, Laurila A, Orizaola G, Johansson F. 2016. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav Ecol Sociobiol. 70(2):237–246. doi:10.1007/s00265-015-2040-8.
  • Ferrari MC, Wisenden BD, Chivers DP. 2010. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool. 88(7):698–724. doi:10.1139/Z10-029.
  • Fraker ME, Hu F, Cuddapah V, McCollum SA, Relyea RA, Hempel J, Denver RJ. 2009. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioural inhibition and suppression of the neuroendocrine stress axis. Horm Behav. 55(4):520–529. doi:10.1016/j.yhbeh.2009.01.007.
  • Gabor CR, Knutie SA, Roznik EA, Rohr JR. 2018. Are the adverse effects of stressors on amphibians mediated by their effects on stress hormones? Oecologia. 186(2):393–404. doi:10.1007/s00442-017-4020-3.
  • Gonzalo A, López P, Martín J. 2007. Iberian green frog tadpoles may learn to recognize novel predators from chemical alarm cues of conspecifics. Anim Behav. 74(3):447–453. doi:10.1016/j.anbehav.2006.11.032.
  • Gonzalo A, López P, Martín J. 2009. Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles. Anim Cogn. 12(5):745–750. doi:10.1007/s10071-009-0232-1.
  • Gonzalo A, López P, Martín J. 2010. Risk level of chemical cues determines retention of recognition of new predators in Iberian green frog tadpoles. Behav Ecol Sociobiol. 64(7):1117–1123. doi:10.1007/s00265-010-0927-y.
  • Gosner KL. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 16:183–190.
  • Hammer Ø, Harper DA, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 4:9.
  • Harris BN, Carr JA. 2016. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol. 230:110–142. doi:10.1016/j.ygcen.2016.04.006.
  • Hettyey A, Roelli F, Thuerlimann NINA, Zuercher AC, Van Buskirk J. 2012. Visual cues contribute to predator detection in anuran larvae. Biol J Linn Soc. 106(4):820–827. doi:10.1111/j.1095-8312.2012.01923.x.
  • Hettyey A, Tóth Z, Thonhauser KE, Frommen JG, Penn DJ, Van Buskirk J. 2015. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia. 179(3):699–710. doi:10.1007/s00442-015-3382-7.
  • Hickman CR, Stone MD, Mathis A. 2004. Priority use of chemical over visual cues for detection of predators by graybelly salamanders, Eurycea multiplicata griseogaster. Herpetologica. 60(2):203–210. doi:10.1655/03-26.
  • Hossie TJ, Ferland-Raymond B, Burness G, Murray DL. 2010. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation? Ecoscience. 17(1):100–108. doi:10.2980/17-1-3312.
  • Innes-Gold AA, Zuczek NY, Touchon JC. 2019. Right phenotype, wrong place: predator-induced plasticity is costly in a mismatched environment. Proc R Soc B. 286(1916):20192347. doi:10.1098/rspb.2019.2347.
  • Jara FG, Perotti MG. 2010. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia. 644(1):313–324. doi:10.1007/s10750-010-0196-9.
  • Joshi AM, Wadekar NV, Gramapurohit NP. 2017. Does corticosterone mediate predator-induced responses of larval Hylarana indica? Gen Comp Endocrinol. 251:30–37. doi:10.1016/j.ygcen.2016.09.009.
  • Jowers MJ, Campell-Palmer R, Walsh PT, Downie JR. 2006. Intraspecific variation in the avoidance response of stream frog (Mannophryne trinitatis) tadpoles to fish and prawn predators. The Herpetol J. 16:337–346.
  • Kats LB, Petranka JW, Sih A. 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology. 69(6):1865–1870. doi:10.2307/1941163.
  • Kiesecker JM, Chivers DP, Blaustein AR. 1996. The use of chemical cues in predator recognition by western toad tadpoles. Anim Behav. 52(6):1237–1245. doi:10.1006/anbe.1996.0271.
  • Kulkarni PS, Gramapurohit NP. 2017. Effect of corticosterone on larval growth, antipredator behaviour and metamorphosis of Hylarana indica. Gen Comp Endocrinol. 251:21–29. doi:10.1016/j.ygcen.2016.09.001.
  • Lardner B. 2000. Morphological and life history responses to predators in larvae of seven anurans. Oikos. 88(1):169–180. doi:10.1034/j.1600-0706.2000.880119.x.
  • Leu ST, Whiting MJ, Mahony MJ, Fenton B. 2013. Making friends: social attraction in larval green and golden bell frogs, Litoria aurea. Plos one. 8(2):e56460. doi:10.1371/journal.pone.0056460.
  • Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 68(4):619–640. doi:10.1139/z90-092.
  • Maher JM, Werner EE, Denver RJ. 2013. Stress hormones mediate predator induced phenotypic plasticity in amphibian tadpoles. Proc R Soc B Biol Sci. 280(1758):20123075. doi:10.1098/rspb.2012.3075.
  • Mathis A, Vincent F. 2000. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Can J Zool. 78(9):1646–1652. doi:10.1139/z00-090.
  • Mirza RS, Ferrari MCO, Kiesecker JM, Chivers DP. 2006. Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour. 143(7):877–889. doi:10.1163/156853906778017926.
  • Mogali SM, Saidapur SK, Shanbhag BA. 2011. Levels of predation modulate antipredator defense behavior and metamorphic traits in the toad Bufo melanostictus. J Herpetol. 45(4):428–431. doi:10.1670/10-273.1.
  • Mogali SM, Saidapur SK, Shanbhag BA. 2012. Tadpoles of the bronze frog (Rana temporalis) assess predation risk before evoking antipredator defense behavior. J Ethol. 30(3):379–386. doi:10.1007/s10164-012-0335-z.
  • Mogali SM, Saidapur SK, Shanbhag BA. 2020a. Behavioral responses of tadpoles of Duttaphrynus melanostictus (Anura: Bufonidae) to cues of starved and fed dragonfly larvae. Phyllomedusa: J Herpetol. 19(1):93–98. doi:10.11606/issn.2316-9079.v19i1p93-98.
  • Mogali SM, Shanbhag BA, Saidapur SK. 2020b. Adaptive significance of the transparent body in the tadpoles of ornamented pygmy frog, Microhyla ornata (Anura, Amphibia). Acta Herpetol. 15:55–57.
  • Peterson JA, Blaustein AR. 1992. Relative palatabilities of anuran larvae to natural aquatic insect predators. Copeia. 1992(2):577–584. doi:10.2307/1446225.
  • Phuge S, Phuge A. 2019. Predator-prey interactions of tadpoles in different layers of the water column. J Ethol. 37(2):197–202. doi:10.1007/s10164-019-00588-4.
  • Phuge S, Tapkir S, Bhand V, Kour G, Pandit R. 2020. Comparative analysis of anti-predator behaviour and life history traits of the tadpoles exposed to predation risk and corticosterone. Proc Zool Soc. 73(3):220–226. doi:10.1007/s12595-019-00320-7.
  • Polo‐Cavia N, Gomez‐Mestre I, Fox C. 2014. Learned recognition of introduced predators determines survival of tadpole prey. Funct Ecol. 28(2):432–439. doi:10.1111/1365-2435.12175.
  • Pritchard G. 1965. Prey capture by dragonfly larvae (Odonata; Anisoptera). Can J Zool. 43(2):271–289. doi:10.1139/z65-026.
  • Richter-Boix A, Llorente GA, Montori A. 2007. A comparative study of predator-induced phenotype in tadpoles across a pond permanency gradient. Hydrobiologia. 583(1):43–56. doi:10.1007/s10750-006-0475-7.
  • Saidapur SK, Veeranagoudar DK, Hiragond NC, Shanbhag BA. 2009. Mechanism of predator–prey detection and behavioral responses in some anuran tadpoles. Chemoecology. 19(1):21–28. doi:10.1007/s00049-009-0004-z.
  • Schoeppner NM, Relyea RA. 2009. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences. Funct Ecol. 23(6):1114–1121. doi:10.1111/j.1365-2435.2009.01578.x.
  • Stauffer HP, Semlitsch RD. 1993. Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles. Anim Behav. 46(2):355–364. doi:10.1006/anbe.1993.1197.
  • Tapkir S, Kharat S, Kumkar P, Gosavi S. 2019. Impact, recovery and carryover effect of Roundup® on predator recognition in common spiny loach, Lepidocephalichthys thermalis. Ecotoxicol. 28(2):189–200. doi:10.1007/s10646-018-02011-z.
  • Tejedo M. 1993. Size-dependent vulnerability and behavioral responses of tadpoles of two anuran species to beetle larvae predators. Herpetologica. 49:287–294.
  • Van Buskirk J, McCollum SA, Werner EE. 1997. Natural selection for environmentally induced phenotypes in tadpoles. Evolution. 51(6):1983–1992. doi:10.1111/j.1558-5646.1997.tb05119.x.
  • Woodward BD. 1983. Predator–prey interactions and breeding-pond use of temporary-pond species in a desert anuran community. Ecology. 64(6):1549–1555. doi:10.2307/1937509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.