101
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A modified CTAB method for high-molecular-weight DNA preparation from deep-sea holothurians

, , , &
Pages 137-150 | Received 08 Feb 2023, Accepted 19 Jul 2023, Published online: 01 Aug 2023

References

  • Aboul-Maaty NAF, Oraby HAS. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Natl Res Cent. 43(1):25–35. doi: 10.1186/s42269-019-0066-1.
  • Angthong P, Uengwetwanit T, Pootakham W, Sittikankaew K, Sonthirod C, Sangsrakru D, Yoocha T, Nookaew I, Wongsurawat T, Jenjaroenpun P, et al. 2020. Optimization of high molecular weight DNA extraction methods in shrimp for a long-read sequencing platform. PeerJ. 8:e10340. doi: 10.7717/peerj.10340.
  • Attaran-Fariman G, Javid P. 2015. The best DNA extraction method from sea anemone species with the mucosal tissue. Indian J Geo-Mar Sci. 44(7):1011–1016.
  • Blin N, Stafford DW. 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 3(9):2303–2308. doi: 10.1093/nar/3.9.2303.
  • Bohn JM. 2005. Myriotrochus (Oligotrochus) meteorensis spec. nov., a new myrio-trochid holothurian from the deep-sea off NW Africa (Echinodermata: Holothuroidea: Myriotrochidae). Zootaxa. 1078(11):33–40. doi: 10.11646/zootaxa.1078.1.3.
  • Boulart C, Rouxel O, Scalabrin C, Meur PL, Pelleter E, Poitrimol C, Thiébaut E, Matabos M, Castel J, Tran A, et al. 2022. Active hydrothermal vents in the Woodlark Basin may act as dispersing centres for hydrothermal fauna. Commun Earth Environ. 3(1):64. doi: 10.1038/s43247-022-00387-9.
  • Costa J, Melo VS, Santos CG, Oliveira MBPP, Mafra I. 2015. Tracing tree nut allergens in chocolate: a comparison of DNA extraction protocols. Food Chem. 187(15):469–476. doi: 10.1016/j.foodchem.2015.04.073.
  • Damsteegt EL, McHugh N, Lokman PM. 2016. Storage by lyophilization - resulting RNA quality is tissue dependent. Anal Biochem. 511:92–96. doi: 10.1016/j.ab.2016.08.005.
  • Glover AG, Wiklund H, Rabone M, Amon DJ, Smith CR, O’Hara T, Mah CL, Dahlgren TG. 2016. Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata. Biodivers Data J. 4:e7251. doi: 10.3897/BDJ.4.e7251.
  • Green MR, Sambrook J. 2012. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press.
  • Hara M, Nakanishi H, Takahashi S, Tamura A, Yoneyama K, Saito K, Takada A. 2015. Effects of storage method on DNA degradation in old bloodstain samples. Forensic Sci Int. 5:e39–e41. doi: 10.1016/j.fsigss.2015.09.016.
  • Hoareau TB, Boissin E. 2010. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Resour. 10(6):960–967. doi: 10.1111/j.1755-0998.2010.02848.x.
  • Jamieson AJ, Gebruk A, Fujii T, Solan M. 2011. Functional effects of the hadal sea cucumber Elpidia atakama (Echinodermata: Holothuroidea, Elasipodida) reflect small-scale patterns of resource availability. Mar Biol. 158(12):2695–2703. doi: 10.1007/s00227-011-1767-7.
  • Jo J, Oh J, Lee HD, Hong HH, Lee SG, Cheon S, Kern EMA, Jin S, Cho SJ, Park JK, et al. 2016. Supporting data for “Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. GigaScience Database. doi: 10.5524/100257.
  • Jo J, Oh J, Lee HD, Hong HH, Lee SG, Cheon S, Kern EMA, Jin S, Cho SJ, Park JK, et al. 2017. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. GigaScience. 6(1):1–6. doi: 10.1093/gigascience/giw006.
  • Liao MJ, Li B, Xiao N, Kong M, Wang YG, Wang JJ, Rong XJ, Zhang Z, Yu YX. 2020. Complete sequence of mitochondrial DNA of a deep-sea holothurian species of the genus Synallactes (Synallactida: Synallactidae). Mitochondrial DNA Part B. 5(3):2699–2700. doi: 10.1080/23802359.2020.1787266.
  • Liu RY, Liu J, Zhang HB. 2021. Positive selection analysis reveals the deep-sea adaptation of a hadal sea cucumber (Paelopatides sp.) to the Mariana Trench. J Ocean Limnol. 39(1):266–281. doi: 10.1007/s00343-020-0241-0.
  • Li YN, Xiao N, Zhang LP, Zhang HB. 2018. Benthodytes marianensis, a new species of abyssal elasipodid sea cucumbers (Elasipodida: Psychropotidae) from the Mariana Trench area. Zootaxa. 4462(3):443–450. doi: 10.11646/zootaxa.4462.3.10.
  • Lohuis MT, Alderslade P, Miller DJ. 1990. Isolation and cloning of DNA from somatic tissue of soft corals (Cnidaria: Octocorallia). Mar Biol. 104(3):489–492. doi: 10.1007/bf01314354.
  • Mu WD, Liu J, Zhang HB, Ruggeri P. 2018. Complete mitochondrial genome of Benthodytes marianensis (Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea cucumber. PLoS One. 13(11):e0208051. doi: 10.1371/journal.pone.0208051.
  • Ogawa A, Morita T, Fujita T. 2020. Elpidia soyoae, a new species of deep-sea holothurian (Echinodermata) from the Japan Trench Area. Spec Div. 25(2):153–162. doi: 10.12782/specdiv.25.153.
  • Pierrat J, Bédier A, Eeckhaut I, Magalon H, Frouin P. 2022. Sophistication in a seemingly simple creature: a review of wild holothurian nutrition in marine ecosystems. Biol Rev Camb Philos Soc. 97(1):273–298. doi: 10.1111/brv.12799.
  • Pinto SM, Fernandes-Matioli FMC, Schlenz E. 2000. DNA extraction from sea anemone (Cnidaria: Actiniaria) tissues for molecular analyses.Genetics and. Mol Biol. 23(3):601–604. doi: 10.1590/S1415-47572000000300017.
  • Puch-Hau C, Sánchez-Tapia IA, Patiño-Suárez V, Olvera-Novoa MA, Klanian MG, Quintanilla-Mena M, Zapata-Péreza O. 2019. Evaluation of two independent protocols for the extraction of DNA and RNA from different tissues of sea cucumber Isostichopus badionotus. MethodsX. 6:1627–1634. doi: 10.1016/j.mex.2019.07.010.
  • Rogacheva A. 2012. Taxonomy and distribution of the genus Kolga (Elpidiidae: Holothuroidea: Echinodermata). J Mar Biol Ass. 92(5):1183–1193. doi: 10.1017/s0025315411000427.
  • Solís-Marín FA, Billett DSM, Preston J, Rogers AD. 2004. Mitochondrial DNA sequence evidence supporting the recognition of a new North Atlantic Pseudostichopus species (Echinodermata: Holothuroidea). J Mar Biol Ass. 84(5):1077–1084. doi: 10.1017/s002531540401046xh.
  • Soniat TJ, Sihaloho HF, Stevens RD, Little TD, Phillips CD, Bradley RD, Baird A. 2021. Temporal-dependent effects of DNA degradation on frozen tissues archived at −80°C. J Mammal. 102(2):375–383. doi: 10.1093/jmammal/gyab009.
  • Stefanik DJ, Wolenski FS, Friedman LE, Gilmore TD, Finnerty JR. 2013. Isolation of DNA, RNA and protein from the starlet sea anemone Nematostella vectensis. Nat Protoc. 8(5):892–899. doi: 10.1038/nprot.2012.151.
  • Straube D, Juen A. 2013. Storage and shipping of tissue samples for DNA analyses: A case study on earthworms. Eur J Soil Biol. 57:13–18. doi: 10.1016/j.ejsobi.2013.04.001.
  • Sun SE, Sha ZL, Xiao N. 2021. The first two complete mitogenomes of the order Apodida from deep-sea chemoautotrophic environments: New insights into the gene rearrangement, origin and evolution of the deep-sea sea cucumbers. Comp Biochem Physiol Part D Genomics Proteomics. 39(8):100839. doi: 10.1016/j.cbd.2021.100839.
  • Sun XD, Sun GH, Yang JM, Ji CL, Wang WJ, Song ZL. 2010. Studies on genomic DNA extraction of sea cucumbers (Stichopus japonicus Selenka). Chin J Biotechnol Bull (In Chinese). 3:149–153.
  • Takano T, Ijichi M, Itoh H, Fukuda H, Yoshizawa S. 2019. Complete mitochondrial genome sequences of a deep-sea holothurian species of the genus Scotoplanes (Elasipodida: Elpidiidae). Mitochondrial DNA Part B. 4(1):112–113. doi: 10.1080/23802359.2018.1536462.
  • Thandar AS. 1998. A new genus and three new species of deep-sea holothuroids from the west coast of South Africa (Echinodermata). J Zool. 244(1):79–88. doi: 10.1111/j.1469-7998.1998.tb00009.x.
  • Thomas EA, Liu RY, Amon D, Copley JT, Glover AG, Helyar SJ, Olu K, Wiklund H, Zhang HB, Sigwart JD. 2020. Chiridota heheva—the cosmopolitan holothurian. Mar Biodivers. 50(6):110. doi: 10.1007/s12526-020-01128-x.
  • Wang ZZ, Wang L, Gu CL, Ma P, Wang XL. 2014. Improved method for extracting genomic DNA from Apostichopus japonicus samples stored in fixation fluid. Chin J Hebei Fish (In Chinese). 8:8–9, 39.
  • Xiao N, Gong L, Kou Q, Li XZ. 2019. Psychropotes verrucicaudatus, a new species of deep-sea holothurian (Echinodermata: Holothuroidea: Elasipodida: Psychropotidae) from a seamount in the South China Sea. Bull B Mar Sci. 95(3):421–430. doi: 10.5343/bms.2018.0041.
  • Xiao N, Li XM, Sha ZL. 2018. Psychropotid holothurians (Echinodermata: Holothuroidea: Elasipodida) of the tropical Western Pacific collected by the KEXUE expedition with description of one new species. Mar Biol Res. 14(5):1–11. doi: 10.1080/17451000.2018.1546012.
  • Xin ZG, Chen JP. 2012. A high throughput DNA extraction method with high yield and quality. Plant Methods. 8(1):26. doi: 10.1186/1746-4811-8-26.
  • Yu C, Zhang DS, Zhang RY, Wang CS. 2022. New psychropotid species (Echinodermata, Holothuroidea, Elasipodida) of the Western Pacific with phylogenetic analyses. Zookeys. 1088:99–114. doi: 10.3897/zookeys.1088.69141.
  • Zhang L, He J, Tan PP, Gong Z, Qian SY, Miao YY, Zhang HY, Tu GX, Chen Q, Zhong QQ, et al. 2022. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun Biol. 5(1):224. doi: 10.1038/s42003-022-03176-4.
  • Zhang XJ, Sun LN, Yuan JB, Sun YM, Gao Y, Zhang LB, Li SH, Dai H, Jean-François H, Liu CZ, et al. 2017. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol. 15(10):e2003790. doi: 10.1371/journal.pbio.2003790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.