233
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Conductivity and Dielectric Behavior Studies of Carboxymethyl Cellulose from Kenaf Bast Fiber Incorporated with Ammonium Acetate-BMATFSI Biopolymer Electrolytes

, , &
Pages 250-260 | Received 14 Nov 2014, Accepted 02 Dec 2014, Published online: 02 Apr 2015

REFERENCES

  • Wright, P. V. 1975. Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J. 7(5): 319–327.
  • Armand, M. B., J. M. Chabagno, M. J. Duclot, P. Vashishta, J. N. Mundy, and G. K. Shenoy. 1979. Fast ion transport in solids. In Proceedings of the International Conference on Fast Ion Transport in Solids, Electrodes, and Electrolytes, Lake Geneva, Wisconsin, U.S.A., May 21–25, 1979, ed. P. Vashishta, J. N. Mundy and G. K. Shenoy. New York: North Holland, pp. 131–136.
  • Rani, M. S. A., S. Rudhziah, A. Ahmad, and N. S. Mohamed. 2014. Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9): 2371–2385.
  • Osman, Z., Z. A. Ibrahim, and A. K. Arof. 2001. Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 44(2): 167–173.
  • Khiar, A. S. A., R. Puteh, and A. K. Arof. 2006. Conductivity studies of a chitosan-based polymer electrolyte. Phys. B Condens. Matter 373(1): 23–27.
  • Majid, S. R., and A. K. Arof. 2005. Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Phys. B Condens. Matter 355(1): 78–82.
  • Viebke, C., J. Borgström, and L. Piculell. 1995. Characterisation of kappa- and iota-carrageenan coils and helices by MALLS/GPC. Carbohydr. Polym. 27(2): 145–154.
  • Arof, A. K., N. E. A. Shuhaimi, N. A. Alias, M. Z. Kufian, and S. R. Majid. 2010. Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J. Solid State Electrochem. 14(12): 2145–2152.
  • Marcondes, R. F., P. S. D’Agostini, J. Ferreira, E. M. Girotto, A. Pawlicka, and D. C. Dragunski. 2010. Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics 181(13): 586–591.
  • Dragunski, D. C., and A. Pawlicka. 2002. Starch based solid polymeric electrolytes. Mol. Cryst. Liq. Cryst. 374(1): 561–568.
  • Leones, R., F. Sentanin, L. C. Rodrigues, I. M. Marrucho, J. M. S. S. Esperança, A. Pawlicka, and M. M. Silva. 2012. Investigation of polymer electrolytes based on agar and ionic liquids. Express Polym. Lett. 6(12): 1007–1016.
  • Raphael, E., C. O. Avellaneda, M. A. Aegerter, M. M. Silva, and A. Pawlicka. 2012. Agar-based gel electrolyte for electrochromic device application. Mol. Cryst. Liq. Cryst. 554(1): 264–272.
  • Nik Aziz N. A., N. K. Idris, and M. I. N. Isa. 2010. Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies. Int. J. Polym. Anal. Charact. 15(5): 319–327.
  • Chai, M. N., and M. I. N. Isa. 2013. Electrical characterization and ionic transport properties of carboxyl methylcellulose-oleic acid solid polymer electrolytes. Int. J. Polym. Anal. Charact. 18(4): 280–286.
  • Nigmatullin, R., R. Lovitt, C. Wright, M. Linder, T. Nakari-Setälä, and M. Gama. 2004. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf. B: Biointerfaces 35(2): 125–135.
  • Kelly, I. E., J. R. Owen, and B. C. H. Steele. 1985. Poly (ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 14(1): 13–21.
  • Cowie, J. M. G., and G. H. Spence. 1998. Ion conduction in macroporous polyethylene film doped with electrolytes. Solid State Ionics 109(1): 139–144.
  • Armand, M., F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati. 2009. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8): 621–629.
  • Shin, J. H., W. A. Henderson, S. Scaccia, P. P. Prosini, and S. Passerini. 2006. Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40°C. J. Power Sources 156(2): 560–566.
  • Shin, J. H., W. A. Henderson, and S. Passerini. 2003. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5(12): 1016–1020.
  • Ye, Y. S., J. Rick, and B. J. Hwang. 2013. Ionic liquid polymer electrolytes. J. Mater. Chem. A 1(8): 2719–2743.
  • Welton, T. 1999. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8): 2071–2084.
  • Fernicola, A., B. Scrosati, and H. Ohno. (2006). Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12(2): 95–102.
  • Anuar, N. K., R. H. Y. Subban, and N. S. Mohamed. 2012. Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5(12): 2609–2620.
  • Ramya, C. S., S. Selvasekarapandian, T. Savitha, G. Hirankumar, and P. C. Angelo. 2007. Vibrational and impedance spectroscopic study on PVP–NH4SCN based polymer electrolytes. Phys. B Condens. Matter 393(1): 11–17.
  • Jacob, M. M. E., S. R. S. Prabaharan, and S. Radhakrishna. 1997. Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104(3): 267–276.
  • Jurado, J. F., J. A. Trujillo, B. E. Mellander, and R. A. Vargas. 2003. Effect of AgBr on the electrical conductivity of β-AgI. Solid State Ionics 156(1): 103–112.
  • Mohamed, N. S., and A. K. Arof. 2004. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 132(1): 229–234.
  • Buraidah, M. H., L. P. Teo, S. R. Majid, and A. K. Arof. 2009. Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Phys. B Condens. Matter 404(8): 1373–1379.
  • Shukur, M. F., F. M. Ibrahim, N. A. Majid, R. Ithnin, and M. F. Z. Kadir. 2013. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI. Phys. Scr. 88(2): 025601.
  • Liew, C. W., Y. S. Ong, J. Y. Lim, C. S. Lim, K. H. Teoh, and S. Ramesh. 2013. Effect of ionic liquid on semi–crystalline poly (vinylidene fluoride–co–hexafluoropropylene) solid copolymer electrolytes. Int. J. Electrochem. Sci. 8: 7779–7794.
  • Rhoo, H. J., H. T. Kim, J. K. Park, and T. S. Hwang. 1997. Ionic conduction in plasticized PVCPMMA blend polymer electrolytes. Electrochim. Acta 42(10): 1571–1579.
  • Aravindan, V., C. Lakshmi, and P. Vickraman. 2009. Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoropropylene/poly ethylmethacrylate blend polymer electrolytes. Curr. Appl. Phys. 9(5): 1106–1111.
  • Johan, M. R., and L. M. Ting. 2011. Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int. J. Electrochem. Sci. 6: 4737–4748.
  • Rajendran, S., M. Sivakumar, and R. Subadevi. 2004. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58(5): 641–649.
  • Howell, F. S., R. A. Bose, P. B. Macedo, and C. T. Moynihan. 1974. Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78(6): 639–648.
  • Rajendran, S., O. Mahendran, and R. Kannan. 2002. Lithium ion conduction in plasticized PMMA–PVdF polymer blend electrolytes. Mater. Chem. Phys. 74(1): 52–57.
  • Khiar, A. A., and A. K. Arof. 2010. Conductivity studies of starch-based polymer electrolytes. Ionics 16(2): 123–129.
  • Macdonald, J. R. 1987. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 223(1): 25–50.
  • Tamilselvi, P., and M. Hema. 2014. Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Phys. B Condens. Matter 437: 53–57.
  • Devi, P. I., and K. Ramachandran. 2011. Dielectric studies on hybridised PVDF–ZnO nanocomposites. J. Exp. Nanosci. 6(3): 281–293.
  • MacCallum, J. R., and C. A. Vincent, eds. 1989. Polymer Electrolyte Reviews, Vol. 2. New York: Springer.
  • Ramesh, S., T. F. Yuen, and C. J. Shen. 2008. Conductivity and FTIR studies on PEO–LiX [X: CF3SO3-, SO42] polymer electrolytes. Spectrochim. Acta Part A 69(2): 670–675.
  • Shastry, M. C. R., and K. J. Rao. 1991. AC conductivity and dielectric relaxation studies in AgI-based fast ion conducting glasses. Solid State Ionics 44(3–4): 187–198.
  • Ramesh, S., and A. K. Arof. 2001. Ionic conductivity studies of plasticized poly (vinyl chloride) polymer electrolytes. Mater. Sci. Eng. B 85(1): 11–15.
  • Dasari, M. P., K. S. Rao, P. M. Krishna, and G. G. Krishna. 2011. Barium strontium bismuth niobate layered perovskites: Dielectric, impedance and electrical modulus characteristics. Acta Phys. Pol. A 119(3): 387–394.
  • Muralidharan, P., M. Venkateswarlu, and N. Satyanarayana. 2004. Sol–gel synthesis, characterization and impedance studies of lithium borosilicate glass. Mater. Res. Bull. 39(11): 1753–1762.
  • Baskaran, R., S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori. 2006. Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177(26): 2679–2682.
  • Patro, L. N., and K. Hariharan. 2009. AC conductivity and scaling studies of polycrystalline SnF2. Mater. Chem. Phys. 116(1): 81–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.