461
Views
143
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of New Natural Cellulosic Fiber from Acacia leucophloea Bark

, &
Pages 367-376 | Received 02 Jan 2015, Accepted 13 Jan 2015, Published online: 08 May 2015

REFERENCES

  • Koronis, G., A. Silva, and M. Fontul. 2013. Green composites: A review of adequate materials for automotive applications. Composites Part B 44: 120–127.
  • Thakur, V. K., A. S. Singha, and I. K. Mehta. 2010. Renewable resource-based green polymer composites: Analysis and characterization. Int. J. Polym. Anal. Charact. 15: 137–148.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmuskahya. 2014. Determination of properties of Althaea officinalis L. (marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B 57: 180–186.
  • Satyanarayana, K. G., J. L. Guimaraes, and F. Wypych. 2007. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A 38: 1694–1709.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos. Sci. Technol. 70: 116–122.
  • Malkapuram, R., V. Kumar, and S. N. Yuvraj. 2009. Recent development in natural fibre reinforced polypropylene composites. J. Reinf. Plast. Compos. 28: 1169–1189.
  • Heyne, K. 1950. De nuttige planten van Indonesie (The useful plants of Indonesia). Bandung, Indonesia: N.V. Uitgeverij W. van Hoeve. pp. 713–715.
  • Imran, I., L. Hussaina, M. Zia-Ul-Haq, K. H. Janbaz, A. H. Gilani, and V. De Feo. 2011. Gastrointestial and respiratory activities of Acacia leucophloea. J. Ethnopharmacol. 138: 676–682.
  • Gupta, A. K., R. Gupta, and G. Aiswarya. 2010. Pharmacognostical investigations on Acacia leucophloea stem bark. Int. J. Pharm. Sci. Rev. Res. 1: 160–163.
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110: 423–429.
  • Silva, F. d. A., N. Chawla, and R. Dias de Toledo Filho. 2008. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 68: 3438–3443.
  • Sathishkumar, T. P., P. Navaneethakrishnan, and S. Shankar. 2012. Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Compos. Sci. Technol. 72: 1183–1190.
  • Reddy, N., and Y. Yang. 2008. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresour. Technol. 99: 2449–2454.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92: 1928–1933.
  • Sathishkumar, T. P., P. Navaneetha krishnan, S. Shankar, and R. Rajasekar. 2013. Characterization of new cellulose Sansevieria ehrenbergii fibers for polymer composites. Compos. Interfaces 20(8): 575–593.
  • Kalia, S., B. S. Kaith, and I. Kaur. 2011. Cellulose Fibers: Bio- and Nano-polymer Composites: Green Chemistry and Technology. New York: Springer-Verlag.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2005. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton, FL: CRC Press.
  • Saha, P., S. Manna, S. R. Chowdhury, R. Sen, D. Roy, and B. Adhikari. 2010. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour. Technol. 101: 3182–3187.
  • Sjöström, E. 1993. Wood Chemistry: Fundamentals and Applications. London: Academic Press.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19: 309–317.
  • Kulkarni, A. G., K. G. Satyanarayana, and P. K. Rohatgi. 1983. Mechanical properties of banana fibers (Musa sepientum). J. Mater. Sci. Technol. 18: 2290–2296.
  • Keller, A., M. Leupin, V. Mediavilla, and E. Wintermantel. 2001. Influence of the growth stage of industrial hemp on chemical and physical properties of the fibers. Ind. Crops Prod. 13: 35–48.
  • Kalia, S., B. S. Kaith, and I. Kaur. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 49(7): 1253–1272.
  • Khalil, A. H. P. S., I. Yusra, A. H. Bhat, and M. Jawaid. 2010. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind. Crops Prod. 31: 113–121.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Mater. Des. 32: 453–461.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84: 2222–2234.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Effect of chemical treatments on physicochemical properties of Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19: 383–390.
  • Di Blasi C. 2002. Modeling intra- and extra-particle processes of wood fast pyrolysis. Am. Inst. Chem. Eng. 48: 2386–2397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.