156
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Gamma-Irradiated Gelatin-Based Films Modified by HEMA for Medical Application

, , &
Pages 426-434 | Received 23 Feb 2015, Accepted 22 Mar 2015, Published online: 06 Jul 2015

REFERENCES

  • Ofokansi, K., G. Winter, G. Fricker, and C. Coester. 2010. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur. J. Pharm. Biopharm. 76: 1–9.
  • Lim, L. T., Y. Mine, and A. Tung. 1999. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. J. Food Sci. 64: 616–622.
  • Sobral, P. J. A., F. C. Menegalli, M. D. Hubinger, and M. A. Roques. 2001. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 15: 423–432.
  • Carvalho, R. A., and C. R. F. Grosso. 2004. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocoll. 18: 717–726.
  • Bergo, P., R. A. Carvalho, A. C. S. Vadala, V. C. I. Guevara, and P. J. A. Sobral. 2010. Physical properties of gelatin films plasticized with glycerol, studied by spectroscopic methods. Mater. Sci. Forum 636: 753–758.
  • Vanin, F. M., P. J. A. Sobral, F. C. Menegalli, R. A. Carvalho, and A. M. Q. B. Habitante. 2005. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 19: 899–907.
  • Bergo, P. V. A., R. A. Carvalho, P. J. A. Sobral, F. R. S. Bevilacqua, J. K. C. Pinto, and J. P. Souza. 2006. Microwave transmittance in gelatin-based films. Meas. Sci. Technol. 17: 3261–3264.
  • Arvanitoyannis, I., A. Nakayama, S.-I. Aiba, and N. Yamamoto. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr. Polym. 36: 105–119.
  • Gelatin Manufacturers’ Institute of America. 1986. Standard Methods for Sampling and Testing Gelatins. New York: Gelatin Manufacturers’ Institute of America. Available from http://www.gelatin-gmia.com/
  • Zaman, H. U., M. A. Khan, and R. A. Khan. 2012. Studies on the thermo-mechanical properties of gelatin based films using 2-hydroxyethyl methacrylate by gamma radiation. Open J. Compos. Mater. 2: 15–21.
  • Burdygina, C. I., Y. L. Chenborisova, A. I. Maklakov, and P. V. Kozlov. 1978. International Symposium on Macromolecular Chemistry, Tashkent, Abstracts, vol. 5, pp. 170–172.
  • Sarkar, S., A. Chourasia, S. Maji, S. Sadhukhan, S. Kumar, and B. Adhikari. 2006. Synthesis and characterization of gelatin based polyester urethane scaffold. Bull. Mater. Sci. 29: 475–484.
  • Babin, H., and E. Dickinson. 2001. Influence of transglutaminase treatment on the thermo-reversible gelation of gelatin. Food Hydrocoll. 15: 271–276.
  • Sterman, S., and J. G. Marsden. The effect of silane coupling agents in improving the properties of filled or reinforced thermoplastics. Polym. Eng. Sci. 6: 97–112.
  • Jo, C., H. Kang, N. Y. Lee, J. H. Kwon, and M. W. Byun. 2005. Pectin- and gelatin-based film: Effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem. 72: 745–750.
  • Banihashemi, A., H. Hazarkhani, and A. Abdolmaleki. 2004. Efficient and rapid synthesis of polyureas and polythio-ureas from the reaction of urea and thiourea with diamines under microwave irradiation. J. Polym. Sci. A 42: 2106–2111.
  • Haque, P., A. I. Mustafa, and M. A. Khan. 2007. Effect of cross-linking monomers on the physico-mechanical and degradation properties of photografted chitosan film. Carbohydr. Polym. 68: 109–115.
  • Dai, C., Y. Chen, and M. Liu. 2006. Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry. J. Appl. Polym. Sci. 99: 1795–1801.
  • Stejskal, J., D. Strakova, and P. Kratochvil. 1988. Grafting of gelatin during polymerization of methyl methacrylate in aqueous medium. J. Appl. Polym. Sci. 36: 215–227.
  • Woo, E. M., J. W. Barlow, and D. R. Paul. 1986. Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer. J. Appl. Polym. Sci. 32: 3889–3897.
  • Hassan, E., Y. Wei, H. Jiao, and Y. Muhuo. 2013. Dynamic mechanical properties and thermal stability of poly(lactic acid) and poly(butylene succinate) blends composites. J. Fiber Bioeng. Informat. 6: 85–94.
  • Yang, Q., M. Hirata, Y. Hsu, D. Lu, and Y. Kimura. 2014. Improved thermal and mechanical properties of poly(butylene succinate) by polymer blending with a thermotropic liquid crystalline polyester. J. Appl. Polym. Sci. 131: 39952–39959.
  • Hwang, S. W., J. K. Shim, S. Selke, H. Soto-Valdez, M. Rubino, and R. Auras. 2013. Effect of maleic-anhydride grafting on the physical and mechanical properties of poly(L-lactic acid)/starch blends. Macromol. Mater. Eng. 298: 624–633.
  • Krishnan, A. K., T. S. George, R. Anjana, N. Joseph, and K. E. George. 2013. Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends. J. Appl. Polym. Sci. 127: 1409–1415.
  • Araujo, M. T., S. S. Ray, A. Pegoretti, and A. L. Yarin. 2013. Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties. Mater. Chem. C 1: 351–358.
  • Haque, M. E., N. C. Dafader, F. Akhtar, and M. U. Ahmad. 1996. Radiation dose required for the vulcanization of natural rubber latex. Radiat. Phys. Chem. 48: 505–510.
  • Rahman, M. W., M. M. Hossain, M. J. Alam, N. C. Dafader, and M. E. Haque. 2013. Addition of transition metals to improve physico-mechanical properties of radiation-vulcanized natural rubber latex films. Int. J. Polym. Anal. Charact. 18: 479–487.
  • Rahman, M. W., M. M. Hossain, M. J. Alam, N. C. Dafader, and M. E. Haque. 2014. Role of divalent metals in polymer degradation. Int. J. Polym. Anal. Character. 19: 39–47.
  • Sabharwal, S., T. N. Das, C. V. Chaudhari, Y. K. Bhardwaj, and A. B. Majali. 1998. Mechanism of N-butyl acrylate sensitization action in radiation vulcanization of natural rubber latex. Radiat. Phys. Chem. 51: 309–315.
  • Rahman, M. W., M. E. Haque, M. M. Rahman, and M. Z. Abedin. 2009. Improvement of physico-mechanical properties of radiation-vulcanised natural rubber latex films by adding urea. Polym.-Plast. Technol. Eng. 48: 696–700.
  • Chiellini, E., P. Cinelli, E. G. Fernandes, E.-R. S. Kenawy, and A. Lazzeri. 2001. Gelatin-based blends and composites. Morphological and thermal mechanical characterization. Biomacromolecules 2: 806–811.
  • Machado, G. O., R. E. Prud’homme, and A. Pawlicka. 2007. Conductivity and thermal analysis studies of solid polymeric electrolytes based on plasticized hydroxyethyl cellulose. E-Polymers 115: 1–9.
  • Tanaka, A., T. Nagate, and H. Matsuda. 2005. Acceleration of wound healing by gelatin film dressings with epidermal growth factor. J. Vet. Med. Sci. 67: 909–913.
  • Balakrishnan, B., M. Mohanty, P. R. Umashankar, and A. Jayakrishnan. 2005. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26: 6335–6342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.