389
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Poly(ethylene glycol)-based shape-memory polymers

& ORCID Icon
Pages 463-471 | Received 25 Mar 2017, Accepted 26 Apr 2017, Published online: 05 Jul 2017

References

  • Gall, K., C. M. Yakacki, Y. P. Liu, R. Shandas, N. Willett, and K. S. Anseth. 2005. Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. Part A 73A:339–348.
  • Nelson, A. 2008. Stimuli-responsive polymers - Engineering interactions. Nat. Mater. 7:523–525.
  • Leng, J. S., X. Lan, Y. J. Liu, and S. Y. Du. 2011. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56:1077–1135.
  • Gunes, I. S., and S. C. Jana. 2008. Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials. J. Nanosci. Nanotechnol. 8:1616–1637.
  • Dietsch, B., and T. Tong. 2007. A review - Features and benefits of shape memory polymers (SMPs). J. Adv. Mater.-Covina. 39:3–12.
  • Lewis, C. L., and E. M. Dell. 2016. A review of shape memory polymers bearing reversible binding groups. J. Polym. Sci. Polym. Phys. 54:1340–1364.
  • Liu, C., H. Qin, and P. T. Mather. 2007. Review of progress in shape-memory polymers. J. Mater. Chem. 17:1543–1558.
  • Liu, Y. J., H. Y. Du, L. W. Liu, and J. S. Leng. 2014. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 23: 023001(22pp).
  • Liu, Y. J., H. B. Lv, X. Lan, J. S. Leng, and S. Y. Du. 2009. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 69:2064–2068.
  • Meng, H., and G. Q. Li. 2013. A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221.
  • Meng, Q. H., and J. L. Hu. 2009. A review of shape memory polymer composites and blends. Compos. Part A-Appl, Sci. 40:1661–1672.
  • Pretsch, T. 2010. Review on the functional determinants and durability of shape memory polymers. Polym.-Basel 2:120–158.
  • Ratna, D., and J. Karger-Kocsis. 2008. Recent advances in shape memory polymers and composites: A review. J. Mater. Sci. 43:254–269.
  • Rousseau, I. A. 2008. Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48:2075–2089.
  • Kruusamae, K., K. Mukai, T. Sugino, and K. Asaka. 2015. Electroactive shape-fixing of bucky-gel actuators. IEEE-ASME Trans. Mech. 20:1108–1116.
  • Leng, J. S., X. L. Wu, and Y. J. Liu. 2009. Infrared light-active shape memory polymer filled with nanocarbon particles. J. Appl. Polym. Sci. 114:2455–2460.
  • Fan, K., W. M. Huang, C. C. Wang, Z. Ding, Y. Zhao, H. Purnawali, K. C. Liew, and L. X. Zheng. 2011. Water-responsive shape memory hybrid: Design concept and demonstration. Exp. Polym. Lett. 5:409–416.
  • Li, Y., H. M. Chen, D. Liu, W. X. Wang, Y. Liu, and S. B. Zhou. 2015. pH-responsive shape memory poly(ethylene glycol)-poly(epsilon-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl. Mater. Int. 7:12988–12999.
  • Gong, X. L., Y. Y. Xiao, M. Pan, Y. Kang, B. J. Li, and S. Zhang. 2016. pH- and thermal-responsive multishape memory hydrogel. ACS Appl. Mater. Int. 8:27432–27437.
  • Luo, Y. F., M. N. Huang, S. J. Wang, Y. Fu, and Y. L. Wang. 2011. Design, synthesis and characterization of novel poly(urethane-urea) based on a macrodiol from poly(lactic acid) and poly(p-dioxanone). Chinese Chem. Lett. 22:237–240.
  • d’Ayala, G. G., P. Laurienzo, M. Malinconico, M. R. Nobile, D. Pantalena, and R. Russo. 2012. Memory behaviour of functionalised poly(epsilon-caprolactone) crosslinked by hexamethylene-diisocyanate. Curr. Org. Chem. 16:2708–2716.
  • Boire, T. C., M. K. Gupta, A. L. Zachman, S. H. Lee, D. A. Balikov, K. Kim, L. M. Bellan, and Sung, H.-J. 2015. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomater. 24:53–63.
  • Liu, Y. Y., J. Zhao, L. Y. Zhao, W. W. Li, H. Zhang, X. Yu, and Z. Zhang. 2016. High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl. Mater. Int. 8:311–320.
  • Zarek, M., M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi. 2016. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28:4449–4454.
  • Kunzelman, J., T. Chung, P. T. Mather, and C. Weder. 2008. Shape memory polymers with built-in threshold temperature sensors. J. Mater. Chem. 18:1082–1086.
  • Lantada, A. D., A. D. Romero, and E. C. Tanarro. 2016. Micro-vascular shape-memory polymer actuators with complex geometries obtained by laser stereolithography. Smart Mater. Struct. 25: 065018(10pp).
  • Shen, Q., S. Trabia, T. Stalbaum, V. Palmre, K. Kim, and I. K. Oh. 2016. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Sci. Rep. 6: 24462(11pp).
  • Ulbricht, J., R. Jordan, and R. Luxenhofer. 2014. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35:4848–4861.
  • Obradors, N., and J. Aguilar. 1991. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl. Environ. Microbiol. 57:2383–2388.
  • Gibas, I., H. Janik, and L. Dini. 2010. Poly(epsilon-caprolactonediol) and polyethylene glycol-based polyurethanes for medical applications. Przem Chem. 89:1622–1626.
  • Krok, M., and E. Pamula. 2012. Poly(L-lactide-co-glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as a pore former. J. Appl. Polym. Sci. 125:E187–E199.
  • Buranachai, T., N. Praphairaksit, and N. Muangsin. 2010. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery. AAPS PharmSciTech 11:1128–1137.
  • Jing, X., L. Deng, B. Gao, L. Xiao, Y. Zhang, X. Ke, J. Lian, Q. Zhao, L. Ma, J. Yao, and J. Chen. 2014. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel. Nanomed. Nanotechnol. Biol. Med. 10:371–380.
  • Kumar, K. S. S., A. K. Khatwa, and C. P. R. Nair. 2014. High transition temperature shape memory polymers (SMPs) by telechelic oligomer approach. React. Funct. Polym. 78:7–13.
  • Zhang, S., Z. J. Yu, T. Govender, H. Y. Luo, and B. J. Li. 2008. A novel supramolecular shape memory material based on partial alpha-CD-PEG inclusion complex. Polymer 49:3205–3210.
  • Antonya, G. J. M., C. S. Jarali, S. T. Arunab, and S. Raja. 2017. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications. J. Mech. Behav. Biomed. Mater. 65:857–865.
  • Shim, Y. S., B. C. Chun, and Y. C. Chung. 2006. Thermomechanical properties and shape memory effect of PET-PEG copolymers cross-linked with pentaerythritol. Fiber Polym. 7:328–332.
  • Pandini, S., F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncellid, M. Brisottod, E. Bontempid, and T. Riccòa. 2013. One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(epsilon-caprolactone). Polymer 54:4253–4265.
  • Khonakdar, H. A., J. Morshedian, U. Wagenknecht, and S. H. Jafari. 2003. An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer 44:4301–4309.
  • Chang, Y. W., J. P. Eom, J. G. Kim, H. T. Kim, and D. K. Kim. 2010. Preparation and characterization of shape memory polymer networks based on carboxylated telechelic poly(epsilon-caprolactone)/epoxidized natural rubber blends. J. Ind. Eng. Chem. 16:256–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.