116
Views
0
CrossRef citations to date
0
Altmetric
Articles

Using CLEM to investigate the distribution of nano-sized antimicrobial agents within an EVOH matrix

ORCID Icon, , &
Pages 300-312 | Received 12 Dec 2017, Accepted 08 Jan 2018, Published online: 18 Apr 2018

References

  • Rocha, M., F. A. Ferreira, M. M. Souza, and C. Prentice. 2013. Antimicrobial films: A review. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. In ed. A. Méndez-Vilas, pp. 23–31. Spain: Formatex Research Center.
  • Aucejo, S., C. Marco, and R. Gavara. 1999. Water effect on the morphology of EVOH copolymers. J. Appl. Polym. Sci. 74:1201–1206.
  • López-Rubio, A., J. M. Lagarón, P. Hernández-Muñoz, E. Almenar, R. Catalá, R. Gavara, and M. A. Pascall. 2005. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innovat. Food Sci. Emerg. Technol. 6:51–58.
  • Rosa, M. F., B. S. Chiou, E. S. Medeiros, D. F. Wood, L. H. Mattoso, W. J. Orts, and S. H. Imam. 2009. Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. J. Appl. Polym. Sci. 111:612–618.
  • Cerisuelo, J. P., V. Muriel-Galet, J. M. Bermúdez, S. Aucejo, R. Catalá, R. Gavara, and P. Hernández-Muñoz. 2012. Mathematical model to describe the release of an antimicrobial agent from an active package constituted by carvacrol in a hydrophilic EVOH coating on a PP film. J. Food Eng. 110:26–37.
  • Martínez-Abad, A., J. M. Lagaron, and M. J. Ocio. 2012. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. J. Agric. Food Chem. 60:5350–5359.
  • Martínez-Abad, A., G. Sanchez, J. M. Lagaron, and M. J. Ocio. 2013. Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid Polym. Sci. 291:1381–1392.
  • Mincea, M., A. Negrulescu, and V. Ostafe. 2012. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev. Adv. Mater. Sci. 30:225–242.
  • Villanueva, M. E., A. Salinas, L. E. Díaz, and G. J. Copello. 2015. Chitin nanowhiskers as alternative antimicrobial controlled release carriers. New J. Chem. 39:614–620.
  • Kadokawa, J. I., A. Takegawa, S. Mine, and K. Prasad. 2011. Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohydr. Polym. 84:1408–1412.
  • Du Toit, M. L. 2013. Incorporation of polysaccharide nanowhiskers into a poly(ethylene-co-vinyl alcohol) matrix. Doctoral dissertation, Stellenbosch University, Stellenbosch.
  • Liu, H., W. Liu, B. Luo, W. Wen, M. Liu, X. Wang, and C. Zhou. 2016. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydr. Polym. 147:216–225.
  • Qin, Y., S. Zhang, J. Yu, J. Yang, L. Xiong, and Q. Sun. 2016. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr. Polym. 147:372–378.
  • Li, C., H. Liu, B. Luo, W. Wen, L. He, M. Liu, and C. Zhou. 2016. Nanocomposites of poly(l-lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. Eur. Polym. J. 81:266–283.
  • Qi, H., J. Cai, L. Zhang, and S. Kuga. 2009. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602.
  • Rusli, R., K. Shanmuganathan, S. J. Rowan, C. Weder, and S. J. Eichhorn. 2011. Stress transfer in cellulose nanowhisker composites—Influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369.
  • Huang, J., P. R. Chang, N. Lin, and A. Dufresne. 2014. Polysaccharide-based nanocrystals: Chemistry and applications, pp. 221–222. New York: John Wiley & Sons.
  • Dong, S., and M. Roman. 2007. Fluorescently labeled cellulose nanocrystals for bioimaging applications. J. Am. Chem. Soc. 129:13810–13811.
  • Yang, Q., and X. Pan. 2010. A facile approach for fabricating fluorescent cellulose. J. Appl. Polym. Sci. 117:3639–3644.
  • Hossain, K. M. Z., M. S. Hasan, D. Boyd, C. D. Rudd, I. Ahmed, and W. Thielemans. 2014. Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15:1498–1506.
  • Gu, J., and J. M. Catchmark. 2013. Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers. J. Biol. Eng. 7:31–40.
  • Arockianathan, P. M., S. Sekar, B. Kumaran, and T. P. Sastry. 2012. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int. J. Biol. Macromol. 50:939–946.
  • Mayuri, P. V., and P. Ramesh. 2016. Fabrication and characterization of silver nanoparticle impregnated uniaxially aligned fibre yarns by one-step electrospinning process. J. Mater. Sci. 51:2739–2746.
  • Parang, Z., A. Keshavarz, S. Farahi, S. M. Elahi, M. Ghoranneviss, and S. Parhoodeh. 2012. Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Sci. Iran. 19:943–947.
  • Suslov, A., P. T. Lama, and R. Dorsinville. 2015. Fluorescence enhancement of Rhodamine B by monodispersed silver nanoparticles. Opt. Commun. 345:116–119.
  • Gill, R., L. Tian, W. R. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam. 2012. Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement. J. Phys. Chem. C 116:16687–16693.
  • Liu, P., L. Zhao, X. Wu, F. Huang, M. Wang, and X. Liu. 2014. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application. Spectrochim. Acta, Part A 122:238–245.
  • Bhadra, J., N. J. Al-Thani, S. Karmakar, and N. K. Madi. 2016. Photo-reduced route of polyaniline nanofiber synthesis with embedded silver nanoparticles. Arab. J. Chem. doi:10.1016/j.arabjc.2016.10.001.
  • Islam, O., C. R. Siviour, and K. I. Dragnevski. 2015. An ESEM/EDX methodology for the study of additive adsorption at the polymer-air Interface. In eds. E. Polychroniadis, A. Oral, M. Ozer. 2nd International Multidisciplinary Microscopy and Microanalysis Congress. Springer Proceedings in Physics, vol 164. pp. 145–151. Springer, Cham.
  • Perkovic, M., M. Kunz, U. Endesfelder, S. Bunse, C. Wigge, Z. Yu, V. Hodirnau, M. P. Scheffer, A. Seybert, S. Malkusch, E. M. Schuman, M. Heilemann, and A. S. Frangakis. 2014. Correlative light and electron microscopy with chemical tags. J. Struct. Biol. 186:205–213.
  • Hellström, K., H. Vihinen, K. Kallio, E. Jokitalo, and T. Ahola. 2015. Correlative light and electron microscopy enables viral replication studies at the ultrastructural level. Methods 90:49–56.
  • Wei, D., W. Sun, W. Qian, Y. Ye, and X. Ma. 2009. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 344:2375–2382.
  • Vega-Baudrit, J., R. Alvarado-Meza, and F. Solera-Jiménez. 2014. Synthesis of silver nanoparticles using chitosan as a coating agent by sonochemical method. Av. Quim. 9:125–129.
  • Rieger, K. A., N. P. Birch, and J. D. Schiffman. 2013. Designing electrospun nanofiber mats to promote wound healing—A review. J. Mater. Chem. B 1:4531–4541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.