263
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization on conduction properties of carboxymethyl cellulose/kappa carrageenan blend-based polymer electrolyte system

, , &
Pages 321-330 | Received 14 Dec 2017, Accepted 27 Feb 2018, Published online: 25 Apr 2018

References

  • Chai, M. N., and M. I. N. Isa. 2013. Electrical Characterization and ionic transport properties of carboxymethyl cellulose-oleic acid solid polymer electrolytes. Int. J. Polym. Anal. Charact. 8:280–286.
  • Samsudin, A. S., M. I. A. Aziz, and M. I. N. Isa. 2012. Natural polymer electrolyte system based on sago: Structural and transport behavior characteristics. Int. J. Polym. Anal. Charact. 17:600–607.
  • Zakaria, N. A. M., M. I. N. Isa, N. S. Mohamed, and Subban. 2012. Characterization of polyvinyl chloride/polyethyl methacrylate polymer blend for use as polymer host in polymer electrolytes. J. Appl. Polym. Sci. 126:E419–E424.
  • Rani, M. S. A., N. S. Mohamed, and M. I. N. Isa. 2016. Characterization of proton conducting carboxymethyl cellulose/chitosan dual-blend based biopolymer electrolytes. Mater. Sci. Forum. 846:539–544.
  • Khiar, A. S. A., and A. K. Arof. 2011. Electrical properties of starch/chitosan-NH4NO3 polymer electrolyte. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 5:1662–1666.
  • Joge, P., D. K. Kanchan, P. Sharma, and N. Gondaliya. 2013. Effect of nano-filler on electrical properties of PVA/PEO blend polymer electrolyte. Indian J. Pure Appl. Phys. 51:350–353.
  • Zakaria, N. A., S. Y. S. Yahya, M. I. N. Isa, N. S. Mohamed, and R. H. Y. Subban. 2010. Conductivity and dynamic mechanical studies of PVC/PEMA blend polymer electrolytes. Adv. Mater. Res. 93:429–432.
  • Buraidah, M. H., and A. K. Arof. 2011. Characterization of chitosan/PVA blended electrolyte doped with NH4I. J. Non-Cryst. Solids. 357:3261–3266.
  • Chai, M. N., and M. I. N. Isa. 2001. Carboxymethyl cellulose solid polymer electrolytes: Ionic conductivity and dielectric study. J. Curr. Eng. Res. 1:2250–2637.
  • Othman, M. F. M., M. I. N. Isa, and A. S. Samsudin. 2012. Ionic conductivity and relaxation process in CMC-GA solid biopolymer electrolytes. J. Curr. Eng. Res. 2:6–10.
  • Chai, M. N., and Isa, M. I. N. 2012. Investigation on the conduction mechanism of carboxymethyl cellulose–oleic acid natural solid polymer electrolyte. J. Adv. Technol. Eng. Res. 2:36–39.
  • Woo, H. J., S. R. Majid, and A. K. Arof. 2013. Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ionics. 252:102–108.
  • Fadzallah, I. A., S. R. Majid, M. A. Careem, and A. K. Arof. 2014. A study on ionic interactions in chitosan–oxalic acid polymer electrolytes membranes. J. Membr. Sci. 463:65–72.
  • Tan, W., S. Ramesh, and A. K. Arof. 2009. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Phys. B. 404:4308–4311.
  • Zhu, Y. S., S. Y. Xiao, M. X. Li, Z. Chang, F. X. Wang, J. Gao, and Y. P. Wu. 2015. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources. 288:368–375.
  • Biswal, D. R., and R. P. Singh. 2004. Characterization of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 57:379–387.
  • Casaburi, A., U. M. Rojo, P. Cerrutti, A. Vázquez, and M. L. Foresti. 2017. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. ACS Appl. Mater. Interfaces. 9:12893–12905.
  • Fan, L., L. Wang, S. Gao, P. Wu, M. Li, W. Xie, S. Liu, and W. Wang. 2011. Synthesis and characterization and properties of carboxymethyl kappa carrageenan. Carbohydr. Polym. 86:1167–1174.
  • Fujishima, M., Y. Matsuo, H. Takatori, and K. Uchida. 2008. Proton-conductive acid–base complex consisting of κ-carrageenan and 2-mercaptoimidazole. Electrochem. Commun. 10:1482–1485.
  • Roberts, M., and B. Quemener. 1999. Measurement of carrageenans in food: Challenges, progress and trends in analysis. Trends Food Sci. Technol. 10:169–181.
  • Coleman, M. M., D. J. Skrovanek, J. Hu, and P. C. Painter. 1998. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane–ether blends. J. Am. Chem. Soc. 21:59–65.
  • Guo, L., H. Sato, T. Hashimoto, and Y. Ozaki. 2010. FTIR study on hydrogen bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecule. 43:3897–3902.
  • Rudhziah, S., A. Ahmad, I. Ahmad, and N. S. Mohamed. 2015. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim. Acta. 175:162–168.
  • Wu, C., S. Peng, C. Wen, X. Wang, L. Fan, R. Deng, and J. Pang. 2012. Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydr. Polym. 89:497–503.
  • Ramya, C. S., S. Selvasekarapandian, G. Hirankumar, T. Savitha, and P. C. Angelo. 2008. Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J. Non-cryst. Solids. 354:1494–1502.
  • Suchi, S., D. Naresh, P. Dinesh, and K. Rajiv. 2016. Effect of nano-size fumed silica on ionic conductivity of PVdF-HFP-based plasticized nano-composite polymer electrolytes. Ionics. 22:1865–1872.
  • Arunkumar, R., S. B. Ravi, and R. Usha. 2017. Investigation on Al2O3 doped PVC–PBMA blend polymer electrolytes. J. Mater. Sci. Mater. Electron. 28:3309–3316.
  • Santos, S. P., and J. A. Gomez-Pulido. 2015. Deconvulation of X-ray diffraction profiles using genetic algorithm evolution. Adv. Comput. Intell. 9095:503–514.
  • Ragavendran, K., P. Kalvani, A. Veluchamy, S. Banumathi, R. Thirunakaran, and T. J. Benedict Port. 2004. Characterization of plasticized PEO based solid polymer electrolyte by XRD and AC impedance methods. Portugaliae Electrochim. Acta 22:149–159.
  • Yusof, Y. M., A. Majid, M. Kasmani, H. A. Illias, and M. F. Z. Kadir. 2014. The effect of plasticization on conductivity and other properties of starch/chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Mol. Cryst. Liquid Cryst. 603:73–88.
  • Cole, K. S., and R. H. Cole. 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9:341–351.
  • Abraham, K. M., M. Alamgir, and D. K. Hoffman. 1995. Polymer electrolytes reinforced by Celgard® membranes. J. Electrochem. Soc. 142:638–687.
  • Appetecchi, G. B., F. A. de Paolis, and B. A. Scrosati. 1999. Poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries. J. Electroanal. Chem. 463:248–252.
  • Leena, C., M. V. Karthikeyan, S. Selvasekarapandian, D. S. Vinoth Pandi, and S. Arulmozhi Packiaseeli. 2016. Characterization of high ionic conducting PVAc–PMMA blend-based polymer electrolyte for electrochemical properties. Ionics. 22:2409–2420.
  • Selvasekarapandian, S., M. Hema, J. Kawamura, O. Kamishima, and R. Baskaran. 2010. Characterization of PVA–NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J. Phys. Soc. Jpn. 79SA:163–168.
  • Hema, M., S. Selvasekarapandian, H. Nithya, A. Sakunthala, and D. Arunkumar. 2008. Structural and ionic conductivity studies on proton conducting polymer electrolyte based on polyvinyl alcohol. Ionics. 15:487–491.
  • Chiam-Wen, L., S. Ramesh, K. Ramesh, and A. K. Arof. 2012. Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J. Solid State Electrochem. 16:1869–1875.
  • Buraidah, M. H., L. P. Teo, S. R. Majid, and A. K. Arof. 2016. Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Phys. B. 8:1373–1379.
  • Rudhziah, S., M. S. A. Rani, A. Ahmad, N. S. Mohamed, and H. Kaddami. 2015. Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind. Crops Prod. 72:133–141.
  • Johansson, A., A. Gogoll, and J. Tegenfeldt. 1996. Diffusion and ionic conductivity in Li(CF3SO3) PEG10 and LiN(CF3SO3)2PEG10. Polymer. 37:1387–1393.
  • Nath, A. K., M. Deka, and A. Kumar. 2010. Ionic conduction and phase separation studies in P(VdF-HFP)-LiClO4− dedoped polyaniline nanofiber composite polymer electrolytes—II: Effect of incorporation of PC and DEC. Indian J. Phys. 10:1307–1313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.