738
Views
7
CrossRef citations to date
0
Altmetric
Articles

Recent advances in starch–clay nanocomposites

, , &
Pages 331-345 | Received 06 Feb 2018, Accepted 27 Feb 2018, Published online: 26 Mar 2018

References

  • Thakur, V. K., M.-F. Lin, E. J. Tan, and P. S. Lee. 2012. Green aqueous modification of fluoropolymers for energy storage applications. J. Mater. Chem. 22:5951–5959. doi:10.1039/c2jm15665b
  • Thakur, V. K., J. Yan, M.-F. Lin, C. Zhi, D. Golberg, Y. Bando, R. Sim, and P. S. Lee. 2012. Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym. Chem. 3:962–969. doi:10.1039/c2py00612j
  • Thakur, V. K., E. J. Tan, M.-F. Lin, and P. S. Lee. 2011. Polystyrene grafted polyvinylidene fluoride copolymers with high capacitive performance. Polym. Chem. 2:2000–2009. doi:10.1039/c1py00225b
  • Avella, M., J. J. de Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93:467–474. doi:10.1016/j.foodchem.2004.10.024
  • Park, H.-M., W.-K. Lee, C.-Y. Park, C. Y. Cho, and C. S. Ha. 2003. Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci. 38:909–915. doi:10.1023/A:1022308705231
  • Zhang, Q.-X., Z.-Z. Yu, X.-L. Xie, K. Naito, and Y. Kagawa. 2007. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 48:7193–7200. doi:10.1016/j.polymer.2007.09.051
  • Singha, A. S., and V. K. Thakur. 2008. Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J. Chem. 5:1055–1062. doi:10.1155/2008/395827
  • Thakur, V. K., E. J. Tan, M.-F. Lin, and P. S. Lee. 2011. Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. J. Mater. Chem. 21:3751–3759. doi:10.1039/c0jm02408b
  • Pappu, A., V. Patil, S. Jain, et al. 2015. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. Int. J. Biol. Macromol. 79:449–458. doi:10.1016/j.ijbiomac.2015.05.013
  • Thakur, V. K., and M. K. Thakur. 2015. Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72:834–847. doi:10.1016/j.ijbiomac.2014.09.044
  • Thakur, V. K., and M. K. Thakur. 2014. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem. Eng. 2:2637–2652. doi:10.1021/sc500634p
  • Thakur, V. K., and M. K. Thakur. 2014. Recent trends in hydrogels based on psyllium polysaccharide: A review. J. Clean Prod. 82:1–15. doi:10.1016/j.jclepro.2014.06.066
  • Chen, M., B. Chen, J. R. G. Evans. 2005. Novel thermoplastic starch–clay nanocomposite foams. Nanotechnology 16:2334. doi:10.1088/0957-4484/16/10/056
  • Jordan, J., K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk. 2005. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A 393:1–11. doi:10.1016/j.msea.2004.09.044
  • Thakur, V. K., D. Vennerberg, and M. R. Kessler. 2014. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl. Mater. Interfaces 6:9349–9356. doi:10.1021/am501726d
  • Majdzadeh-Ardakani, K., and B. Nazari. 2010. Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos. Sci. Technol. 70:1557–1563. doi:10.1016/j.compscitech.2010.05.022
  • Cyras, V. P., L. B. Manfredi, M.-T. Ton-That, and A. Vázquez. 2008. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr. Polym. 73:55–63. doi:10.1016/j.carbpol.2007.11.014
  • Thakur, V. K., and M. R. Kessler. 2014. Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain. Chem. Eng. 2:2454–2460. doi:10.1021/sc500473a
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Graft copolymers of natural fibers for green composites. Carbohydr. Polym. 104:87–93. doi:10.1016/j.carbpol.2014.01.016
  • Singha, A. S., and V. K. Thakur. 2008. Saccharum cilliare fiber reinforced polymer composites. E-J Chem. 5:782–791.
  • Singha, A. S., and V. K. Thakur. 2009. Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull. Mater. Sci. 32:49–58. doi:10.1007/s12034-009-0008-x
  • Magalhães, N. F., and Andrade, C. T. 2009. Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties. Carbohydr. Polym. 75:712–718. doi:10.1016/j.carbpol.2008.09.020
  • Lin, M.-F., V. K. Thakur, E. J. Tan, and P. S. Lee. 2011. Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J. Mater. Chem. 21:16500–16504. doi:10.1039/c1jm12429c
  • Lin, M.-F., V. K. Thakur, E. J. Tan, and P. S. Lee. 2011. Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv. 1:576–578. doi:10.1039/c1ra00210d
  • Panamoottil, S. M., P. Poetschke, R. J. T. Lin, D. Bhattacharyya, and S. Fakirov. 2013. Conductivity of microfibrillar polymer–polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study. Express Polym. Lett. 7:607–620. doi:10.3144/expresspolymlett.2013.58
  • Azmi, A. I., R. J. T. Lin, and D. Bhattacharyya. 2012. Experimental study of machinability of GFRP composites by end milling. Mater. Manuf. Process. 27:1045–1050. doi:10.1080/10426914.2012.677917
  • Cardoso, S. M., C. D. O’Connell, R. Pivonka, C. Mooney, V. B. Chalivendra, A. Shukla, and S. Yang. 2014. Effect of external loads on damage detection of rubber-toughened nanocomposites using carbon nanotubes sensory network. Polym. Compos. doi:10.1002/pc.23188
  • Wanasekara, N. D., and V. B. Chalivendra. 2011. Role of surface roughness on wettability and coefficient of restitution in butterfly wings. Soft Matter 7:373–379. doi:10.1039/c0sm00548g
  • Sun, L., N. Wanasekara, V. Chalivendra, and P. Calvert. 2015. Nano-mechanical studies on polyglactin sutures subjected to in vitro hydrolytic and enzymatic degradation. J. Nanosci. Nanotechnol. 15:93–99. doi:10.1166/jnn.2015.9073
  • Amiralian, N., P. K. Annamalai, P. Memmott, and D. J. Martin. 2015. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. doi:10.1007/s10570-015-0688-x
  • Lima-Tenório, M. K., E. T. Tenório-Neto, M. R. Guilherme, F. P. Garcia, C. V. Nakamura, E. A. Pineda, and A. F. Rubira. 2015. Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem. Eng. J. 259:620–629. doi:10.1016/j.cej.2014.08.045
  • Thakur, V. K., and M. R. Kessler. 2015. Self-healing polymer nanocomposite materials: A review. Polymer 69:369–383. doi:10.1016/j.polymer.2015.04.086
  • LeBaron, P. C., Z. Wang, and T. J. Pinnavaia. 1999. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 15:11–29. doi:10.1016/S0169-1317(99)00017-4
  • Mondragón, M., J. E. Mancilla, and F. J. Rodríguez-González. 2008. Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym. Eng. Sci. 48:1261–1267. doi:10.1002/pen.21084
  • Wu, J., J. Lin, M. Zhou, and C. Wei. 2000. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun. 21:1032–1034. doi:10.1002/1521-3927(20001001)21:15<1032::AID-MARC1032>3.0.CO;2-N
  • Eğri, Ö., K. Salimi, S. Eğri, E. Pişkin, and Z. M. O. Rzayev. 2016. Fabrication and characterization of novel starch-grafted poly l-lactic acid/montmorillonite organoclay nanocomposites. Carbohydr. Polym. 137:111–118. doi:10.1016/j.carbpol.2015.10.043
  • Babaee, M., M. Jonoobi, Y. Hamzeh, and A. Ashori. 2015. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 132:1–8. doi:10.1016/j.carbpol.2015.06.043
  • Cheviron, P., F. Gouanvé, and E. Espuche. 2015. Starch/silver nanocomposite: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr. Polym. 134:635–645. doi:10.1016/j.carbpol.2015.07.067
  • Kalambur, S. B., and S. S. Rizvi. 2004. Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53:1413–1416. doi:10.1002/pi.1478
  • Vertuccio, L., G. Gorrasi, A. Sorrentino, and V. Vittoria. 2009. Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr. Polym. 75:172–179. doi:10.1016/j.carbpol.2008.07.020
  • Almasi, H., B. Ghanbarzadeh, and A. A. Entezami. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46:1–5. doi:10.1016/j.ijbiomac.2009.10.001
  • Aouada, F. A., L. H. C. Mattoso, and E. Longo. 2011. New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind. Crops Prod. 34:1502–1508. doi:10.1016/j.indcrop.2011.05.003
  • Chivrac, F., E. Pollet, M. Schmutz, and L. Avérous. 2008. New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromolecules 9:896–900. doi:10.1021/bm7012668
  • Liu, H., D. Chaudhary, S. Yusa, and M. O. Tadé. 2011. Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study. Carbohydr. Polym. 83:1591–1597. doi:10.1016/j.carbpol.2010.10.018
  • Müller, C. M. O., J. B. Laurindo, and F. Yamashita. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind. Crops Prod. 33:605–610. doi:10.1016/j.indcrop.2010.12.021
  • Mbey, J. A., S. Hoppe, and F. Thomas. 2012. Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr. Polym. 88:213–222. doi:10.1016/j.carbpol.2011.11.091
  • Zare, Y. 2015. Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl. Clay Sci. 115:61–66. doi:10.1016/j.clay.2015.07.021
  • Emre, F. B., M. Kesik, F. E. Kanik, H. Zekiye Akpinar, E. Aslan-Gurel, R. M. Rossi, and L. Toppare. 2015. A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 207:102–109. doi:10.1016/j.synthmet.2015.06.015
  • Huang, M.-F., J.-G. Yu, and X.-F. Ma. 2004. Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023. doi:10.1016/j.polymer.2004.07.068
  • Ma, X., J. Yu, and N. Wang. 2007. Production of thermoplastic starch/MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol. Mater. Eng. 292:723–728. doi:10.1002/mame.200700026
  • Anadao, P. 2012. Polymer/clay nanocomposites: Concepts, researches, applications and trends for the future. In Nanocomposites: New Trends and Developments.
  • Pérez, C. J., V. A. Alvarez, and A. Vázquez. 2008. Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater. Sci. Eng. A 480:259–265. doi:10.1016/j.msea.2007.07.031
  • Chivrac, F., O. Gueguen, E. Pollet, S. Ahzi, A. Makradi, and L. Avérous. 2008. Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomater. 4:1707–1714. doi:10.1016/j.actbio.2008.05.002
  • Liao, H.-T., and C.-S. Wu. 2005. Synthesis and characterization of polyethylene–octene elastomer/clay/biodegradable starch nanocomposites. J. Appl. Polym. Sci. 97:397–404. doi:10.1002/app.21763
  • Huang, M., J. Yu, and X. Ma. 2006. High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr. Polym. 63:393–399. doi:10.1016/j.carbpol.2005.09.006
  • Ikeo, Y., K. Aoki, H. Kishi, S. Matsuda, and A. Murakami. 2006. Nano clay reinforced biodegradable plastics of PCL starch blends. Polym. Adv. Technol. 17:940–944. doi:10.1002/pat.816
  • Namazi, H., M. Mosadegh, and A. Dadkhah. 2009. New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study. Carbohydr. Polym. 75:665–669. doi:10.1016/j.carbpol.2008.09.006
  • Kalambur, S., and S. S. H. Rizvi. 2005. Biodegradable and functionally superior starch–polyester nanocomposites from reactive extrusion. J. Appl. Polym. Sci. 96:1072–1082. doi:10.1002/app.21504
  • Perotti, G. F., J. Tronto, M. A. Bizeto, et al. 2014. Biopolymer–clay nanocomposites: Cassava starch and synthetic clay cast films. J. Braz. Chem. Soc. 25:320–330. doi:10.5935/0103-5053.20130300
  • Maisanaba, S., S. Pichardo, M. Puerto, et al. 2015. Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environ. Res. 138:233–254. doi:10.1016/j.envres.2014.12.024
  • Wang, W., and A. Wang. 2016. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl. Clay Sci. 119:18–30. doi:10.1016/j.clay.2015.06.030
  • Bocchini, S., D. Battegazzore, and A. Frache. 2010. Poly(butylensuccinate-co-adipate)-thermoplastic starch nanocomposite blends. Carbohydr. Polym. 82:802–808. doi:10.1016/j.carbpol.2010.05.056
  • B. A., S. Suin, and B. B. Khatua. 2014. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr. Polym. 110:430–439. doi:10.1016/j.carbpol.2014.04.024
  • Ogata, N., S. Kawakage, and T. Ogihara. 1997. Poly(vinyl alcohol)–clay and poly(ethylene oxide)–clay blends prepared using water as solvent. J. Appl. Polym. Sci. 66:573–581. doi:10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  • Fischer, H. 2003. Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng. C 23:763–772. doi:10.1016/j.msec.2003.09.148
  • Lee, S. Y., H. Chen, and M. A. Hanna. 2008. Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Ind. Crops Prod. 28:95–106. doi:10.1016/j.indcrop.2008.01.009
  • Dean, K. M., M. D. Do, E. Petinakis, and L. Yu. 2008. Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Compos. Sci. Technol. 68:1453–1462. doi:10.1016/j.compscitech.2007.10.037
  • McGlashan, S. A., and P. J. Halley. 2003. Preparation and characterisation of biodegradable starch-based nanocomposite materials. Polym. Int. 52:1767–1773. doi:10.1002/pi.1287
  • Kampeerapappun, P., D. Aht-ong, D. Pentrakoon, and K. Srikulkit. 2007. Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67:155–163. doi:10.1016/j.carbpol.2006.05.012
  • Schlemmer, D., R. S. Angélica, and M. J. A. Sales. 2010. Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92:2066–2070. doi:10.1016/j.compstruct.2009.10.034
  • Barzegar, H., M. H. Azizi, M. Barzegar, and Z. Hamidi-Esfahani. 2014. Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr. Polym. 110:26–31. doi:10.1016/j.carbpol.2014.03.092
  • Olad, A., and A. Rashidzadeh. 2008. Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62:293–298. doi:10.1016/j.porgcoat.2008.01.007
  • Zia, F., K. M. Zia, M. Zuber, et al. 2015. Starch based polyurethanes: A critical review updating recent literature. Carbohydr. Polym. 134:784–798. doi:10.1016/j.carbpol.2015.08.034
  • Sweedman, M. C., M. J. Tizzotti, C. Schäfer, and R. G. Gilbert. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 92:905–920. doi:10.1016/j.carbpol.2012.09.040
  • Doi, Y. 1995. Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Macromol. Symp. 98:585–599. doi:10.1002/masy.19950980150
  • Hansen, N. M. L., and D. Plackett. 2008. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 9:1493–1505. doi:10.1021/bm800053z
  • Lu, Y., L. Weng, and X. Cao. 2006. Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites. Carbohydr. Polym. 63:198–204. doi:10.1016/j.carbpol.2005.08.027
  • Anglès, M. N., and A. Dufresne. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353. doi:10.1021/ma0008701
  • Mathew, A. P., and A. Dufresne. 2002. Plasticized waxy maize starch: Effect of Polyols and relative humidity on material properties. Biomacromolecules 3:1101–1108. doi:10.1021/bm020065p
  • Galicia-García, T., F. Martínez-Bustos, O. A. Jiménez-Arévalo, D. Arencón, J. Gámez-Pérez, and A. B. Martínez. 2012. Films of native and modified starch reinforced with fiber: Influence of some extrusion variables using response surface methodology. J. Appl. Polym. Sci. 126:E327–E336. doi:10.1002/app.36982
  • Avérous, L., and E. Pollet. 2012. Environmental Silicate Nano-Biocomposites. Springer: London.
  • Hietala, M., A. P. Mathew, and K. Oksman. 2013. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 49:950–956. doi:10.1016/j.eurpolymj.2012.10.016
  • de Carvalho, A. J. F., A. A. S. Curvelo, and J. A. M. Agnelli. 2001. A first insight on composites of thermoplastic starch and kaolin. Carbohydr. Polym. 45:189–194. doi:10.1016/S0144-8617(00)00315-5
  • Park, H.-M., X. Li, C.-Z. Jin, C. Y. Park, W. J. Cho, and C. S. Ha. 2002. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287:553–558. doi:10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
  • Pandey, J. K., and R. P. Singh. 2005. Green nanocomposites from renewable resources: Effect of Plasticizer on the structure and material properties of clay-filled starch. Starch/Stärke 57:8–15. doi:10.1002/star.200400313
  • Chen, B., and J. R. G. Evans. 2005. Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr. Polym. 61:455–463. doi:10.1016/j.carbpol.2005.06.020
  • Chiou, B.-S., E. Yee, G. M. Glenn, and W. J. Orts. 2005. Rheology of starch–clay nanocomposites. Carbohydr. Polym. 59:467–475. doi:10.1016/j.carbpol.2004.11.001
  • Pérez, C. J., V. A. Alvarez, I. Mondragón, and A. Vázquez. 2007. Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polym. Int. 56:686–693. doi:10.1002/pi.2192
  • Tang, X., S. Alavi, and T. J. Herald. 2008. Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydr. Polym. 74:552–558. doi:10.1016/j.carbpol.2008.04.022
  • Zeppa, C., F. Gouanvé, and E. Espuche. 2009. Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water-sorption, and oxygen-barrier properties. J. Appl. Polym. Sci. 112:2044–2056. doi:10.1002/app.29588
  • Wang, N., X. Zhang, N. Han, and S. Bai. 2009. Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr. Polym. 76:68–73. doi:10.1016/j.carbpol.2008.09.021
  • Chung, Y.-L., S. Ansari, L. Estevez, et al. 2010. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr. Polym. 79:391–396. doi:10.1016/j.carbpol.2009.08.021
  • Chung, Y.-L., and H.-M. Lai. 2010. Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites. Carbohydr. Polym. 80:525–532. doi:10.1016/j.carbpol.2009.12.020
  • Majdzadeh-Ardakani, K., A. H. Navarchian, and F. Sadeghi. 2010. Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr. Polym. 79:547–554. doi:10.1016/j.carbpol.2009.09.001
  • DeLeo, C., C. A. Pinotti, M. C. Gonçalves, and S. Velankar. 2011. Preparation and characterization of clay nanocomposites of plasticized starch and polypropylene polymer blends. J. Polym. Environ. 19:689–697. doi:10.1007/s10924-011-0311-7
  • Souza, A. C., R. Benze, E. S. Ferrão, C. Ditchfield, A. C. V. Coelho, and C. C. Tadini. 2012. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT – Food Sci. Technol. 46:110–117. doi:10.1016/j.lwt.2011.10.018
  • Slavutsky, A. M., M. A. Bertuzzi, and M. Armada. 2012. Water barrier properties of starch–clay nanocomposite films. Braz. J. Food Technol. 15:208–218. doi:10.1590/S1981-67232012000300004
  • Gao, W., H. Dong, H. Hou, and H. Zhang. 2012. Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr. Polym. 88:321–328. doi:10.1016/j.carbpol.2011.12.011
  • Katerinopoulou, K., A. Giannakas, K. Grigoriadi, et al. 2014. Preparation and characterization of acetylated corn starch–(PVOH)/clay nanocomposite films. Carbohydr. Polym. 102:216–222. doi:10.1016/j.carbpol.2013.11.030
  • Navarchian, A. H., M. Jalalian, and M. Pirooz. 2015. Characterization of starch/poly(vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application. J. Plast. Film Sheeting. doi:10.1177/8756087914568904
  • Abreu, A. S., M. Oliveira, A. de Sá, R. M. Rodrigues, M. A. Cerqueira, A. A. Vicente, and A. V. Machado. 2015. Antimicrobial nanostructured starch based films for packaging. Carbohydr. Polym. 129:127–134. doi:10.1016/j.carbpol.2015.04.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.