751
Views
31
CrossRef citations to date
0
Altmetric
Articles

Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold

, ORCID Icon, ORCID Icon, &
Pages 191-203 | Received 02 Oct 2018, Accepted 18 Dec 2018, Published online: 18 Feb 2019

References

  • Cole, B. J., and M. M. Malek. 2013. Articular Cartilage Lesions: A Practical Guide to Assessment and Treatment. Germany: Springer Science & Business Media.
  • Chung, C., and J. A. Burdick. 2008. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 60:243–262.
  • Drury, J. L., and D. J. Mooney. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351.
  • El-Sherbiny, I. M., and M. H. Yacoub. 2013. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013:38.
  • Spiller, K. L., S. A. Maher, and A. M. Lowman. 2011. Hydrogels for the repair of articular cartilage defects. Tissue Eng. Part B Rev. 17:281–299.
  • Jin, R., and P. J. Dijkstra. 2010. Hydrogels for tissue engineering applications. In Biomedical Applications of Hydrogels Handbook. Springer; p. 203–25. doi:https://doi.org/10.1007/978-1-4419-5919-5_11.
  • Doulabi, A. H., K. Mequanint, and H. Mohammadi. 2014. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials (Basel) 7:5327–5355.
  • Stark, Y., K. Suck, C. Kasper, M. Wieland, M. van Griensven, and T. Scheper. 2006. Application of collagen matrices for cartilage tissue engineering. Exp. Toxicol. Pathol. 57:305–311.
  • Abedi, G., A. Sotoudeh, M. Soleymani, A. Shafiee, P. Mortazavi, and M. R. Aflatoonian. 2011. A collagen-poly(vinyl alcohol) nanofiber scaffold for cartilage repair. J. Biomater. Sci. Polym. Ed. 22:2445–2455.
  • Tangsadthakun, C., S. Kanokpanont, N. Sanchavanakit, R. Pichyangkura, T. Banaprasert, Y. Tabata, and S. Damrongsakkul. 2007. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds. J. Biomater. Sci. Polym. Ed. 18:147–163.
  • Muzzarelli, R. A. A. 2009. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 76:167–182.
  • Kim, I.-Y., S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho. 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26:1–21.
  • Oh, D. X., and D. S. Hwang. 2013. A biomimetic chitosan composite with improved mechanical properties in wet conditions. Biotechnol. Progress 29:505–512.
  • Yan, L., Y. Wang, L. Ren, G. Wu, S. G. Caridade, J. Fan, L.-Y. Wang, P.-H. Ji, J. M. Oliveira, J. T. Oliveira, J. F. Mano, R. L. Reis. 2010. Genipin‐cross‐linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. 95:465–475.
  • Huang, Z., Q. Feng, B. Yu, and S. Li. 2011. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater. Sci. Eng. C. 31:683–687.
  • Yan, J., X. Li, L. Liu, F. Wang, T. W. Zhu, and Q. Zhang. 2006. Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artif. Cells, Blood Substitutes, Biotechnol. 34:27–39.
  • Li, Z., and M. Zhang. 2005. Chitosan–alginate as scaffolding material for cartilage tissue engineering. J. Biomed. Mater. Res. 75:485–493.
  • Luo, D., L. Sang, X. Wang, S. Xu, and X. Li. 2011. Low temperature, pH-triggered synthesis of collagen–chitosan–hydroxyapatite nanocomposites as potential bone grafting substitutes. Mater. Lett. 65:2395–2397.
  • Kuo, Y., and S. Leou. 2010. Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Eng. Life Sci. 10:65–74.
  • Ho, M.-H., P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, and D.-M. Wang. 2004. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138.
  • Bazargan-Lari, R., M. E. Bahrololoom, and A. Nemati. 2011. Sorption behavior of Zn (II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water. J. Food Agric. Env. 9:892–897.
  • Chandrakasan, G., D. A. Torchia, and K. A. Piez. 1976. Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J. Biol. Chem. 251:6062–6067.
  • Neumann, T. 2008. Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments Appl Rep [Internet]. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle
  • Kane, R. J., and R. K. Roeder. 2012. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. J. Mech. Behav. Biomed. Mater. 7:41–49.
  • Dang, Q. F., J. Q. Yan, J. J. Li, X. J. Cheng, C. S. Liu, and X. G. Chen. 2011. Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr. Polym. 83:171–178.
  • Lien, S.-M., L.-Y. Ko, and T.-J. Huang. 2009. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 5:670–679.
  • Park, K. M., S. Y. Lee, Y. K. Joung, J. S. Na, M. C. Lee, and K. D. Park. 2009. Thermosensitive chitosan–pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 5:1956–1965.
  • Tan, H., C. R. Chu, K. A. Payne, and K. G. Marra. 2009. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506. [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0142961208010752
  • Aigner, T., and J. Stöve. 2003. Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv. Drug Deliv. Rev. 55:1569–1593.
  • Griffon, D. J., M. R. Sedighi, D. V. Schaeffer, J. A. Eurell, and A. L. Johnson. 2006. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater. 2:313–320.
  • Thein-Han, W. W., and R. D. K. Misra. 2009. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5:1182–1197.
  • Abdou, E. S., K. S. A. Nagy, and M. Z. Elsabee. 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99:1359–1367.
  • Acosta, N., C. Jiménez, V. Borau, and A. Heras. 1993. Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 5:145–153.
  • Yuan, Q., J. Shah, S. Hein, and R. D. K. Misra. 2010. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 6:1140–1148.
  • Armstrong, C. G., and V. C. Mow. 1982. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am. 64:88–94.
  • Pietrucha, K. 2005. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Int. J. Biol. Macromol. 36:299–304.
  • Wang, X., X. Wang, Y. Tan, B. Zhang, Z. Gu, and X. Li. 2009. Synthesis and evaluation of collagen–chitosan–hydroxyapatite nanocomposites for bone grafting. J. Biomed. Mater. Res. 89:1079–1087.
  • Zhu, Y., Z. Dong, U. C. Wejinya, S. Jin, and K. Ye. 2011. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J Biomech. 44:2356–2361. [Internet]. Available from: http://dx.doi.org/10.1016/j.jbiomech.2011.07.010
  • Thomas, L., R. Vg, and P. D Nair. 2017. Effect of stiffness of chitosan-hyaluronic acid dialdehyde hydrogels on the viability and growth of encapsulated chondrocytes. Int. J. Biol. Macromol. 104:1925–1935. [Internet]. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.05.116
  • Moshtagh, P. R., J. Rauker, M. J. Sandker, M. R. Zuiddam, F. W. A. Dirne, E. Klijnstra, L. Duque, R. Steendam, H. Weinans, and A. A. Zadpoor. 2014. Nanomechanical properties of multi-block copolymer microspheres for drug delivery applications. J. Mech. Behav. Biomed. Mater. 34:313–319. [Internet]. Available from: http://dx.doi.org/10.1016/j.jmbbm.2014.03.002
  • Xiao, Y., E. A. Friis, S. H. Gehrke, and M. S. Detamore. 2013. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus. Tissue Eng. Part B Rev. 19:403–412. [Internet]. Available from: http://online.liebertpub.com/doi/abs/10.1089/ten.teb.2012.0461
  • Tronci, G., A. Doyle, S. J. Russell, and D. J. Wood. 2013. Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid. J. Mater. Chem. B. 1:5478–5488. [Internet]. Available from: http://dx.doi.org/10.1039/C3TB20218F
  • McBane, J. E., B. Vulesevic, D. T. Padavan, K. A. McEwan, G. S. Korbutt, and E. J. Suuronen. 2013. Evaluation of a Collagen-Chitosan hydrogel for potential use as a Pro-Angiogenic site for islet transplantation. PLoS One. 8:1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.