148
Views
13
CrossRef citations to date
0
Altmetric
Articles

The potential of biomimetic nanofibrous electrospun scaffold comprising dual component for bone tissue engineering

, , , &
Pages 204-218 | Received 19 Oct 2018, Accepted 24 Dec 2018, Published online: 06 Feb 2019

References

  • Heydari, Z., D. Mohebbi-Kalhori, and M. S. Afarani. 2017. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater. Sci. Eng: C. 81:127–132.
  • Nie, L., D. Chen, J. Fu, S. Yang, R. Hou, and J. Suo. 2015. Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite scaffold coatings for bone regeneration. Biochem. Eng: J. 98:29–37.
  • Zhang, Q., S. Lv, J. Lu, S. Jiang, and L. Lin. 2015. Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity. Int. J. Biol. Macromol. 76:94–101.
  • Kamakura, S., Y. Sasano, and O. Suzuki. 2005. Synthetic octacalcium phosphate (OCP) is an effective scaffold to regenerate bone. Int. Cong. Ser. 1284:290–295.
  • Subramanian, G., C. Bialorucki, and E. Yildirim-Ayan. 2015. Nanofibrous yet injectable polycaprolactone- collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2. Mater. Sci. Eng: C. 51:16–27.
  • Zhang, D., O. J. George, K. M. Petersen, A. C. Jimenez-Vergara, M. S. Hahn, and M. A. Grunlan. 2014. A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta. Biomater. 10:4597–4605.
  • Wong, H. M., P. K. Chu, F. K. L. Leung, K. M. C. Cheung, K. D. K. Luk, and K. W. K. Yeung. 2014. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Progr. Nat. Sci. Mater. Int. 24:561–567.
  • Petrie Aronin, C. E., J. A. Cooper, Jr, L. S. Sefcik, S. S. Tholpady, R. C. Ogle, and E. A. Botchwey. 2008. Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(ε-caprolactone) fabricated via coextrusion and gas foaming. Acta. Biomater. 4:1187–1197.
  • Van Bael, S., T. Desmet, Y. C. Chai, G. Pyka, P. Dubruel, J. P. Kruth, and J. Schrooten. 2013. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Mater. Sci. Eng: C. 33:3404–3412.
  • Eosoly, S., N. E. Vrana, S. Lohfeld, M. Hindie, and L. Looney. 2012. Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mater. Sci. Eng: C. 32:2250–2257.
  • Kim, M. S., and G. Kim. 2014. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr. Polym. 114:213–221.
  • O'brien, F. J. 2011. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95.
  • Dhandayuthapani, B., Y. Yoshida, T. Maekawa, and D. S. Kumar. 2011. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011:1–19.
  • Rajzer, I., E. Menaszek, R. Kwiatkowski, J. A. Planell, and O. Castano. 2014. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater. Sci. Eng: C. 44:183–190.
  • Ghasemi-Mobarakeh, L., M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna. 2010. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mater. Sci. Eng: C. 30:1129–1136.
  • Dan, K., P. P. Molamma, C. Benjamin Qi Yu, L. Sing Shy, R. Seeram, X. Fujian, and X. J. Loh. 2016. Elastic poly(ε -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed. Mater. 11:015007.
  • Venugopal, J., P. Vadgama, T. S. S. Kumar, and S. Ramakrishna. 2007. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology 18:1–8.
  • Heydarkhan-Hagvall, S., K. Schenke-Layland, A. P. Dhanasopon, F. Rofail, H. Smith, B. M. Wu, R. Shemin, R. E. Beygui, and W. R. MacLellan. 2008. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29:2907–2914.
  • Wang, X., B. Ding, and B. Li. 2013. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 16:229–241.
  • Subbiah, T., G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar. 2005. Electrospinning of nanofibers. J. Appl. Polym. Sci. 96:557–569.
  • Huang, Z. M., Y. Z. Zhang, M. Kotaki, and S. Ramakrishna. 2003. A review on polymer nanofibers by electrospinning and their applications in scaffolds. Compos. Sci. Technol. 63:2223–2253.
  • Lamba, N. M. K., K. A. Woodhouse, and S. L. Cooper. 1998. Polyurethanes in Biomedical Applications. Florida: CRC Press.
  • Ma, Z. W., Y. Hong, D. M. Nelson, J. E. Pichamuthu, C. E. Leeson, and W. R. Wagner. 2011. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 12:3265–3274.
  • Sinha, J., V. Singh, J. Singh, and A. K. Rai. 2017. Phytochemistry, Ethnomedical uses and future prospects of mahua (Madhuca longifolia) as a food: a review. J. Nutr. Food Sci. 7:573.
  • Sunita, M., and P. Sarojini. 2013. Madhuca lonigfolia (Sapotaceae): a review of its traditional uses and nutritional properties. Int. J. Soc. Sci. Human. Inv. 2:30–36.
  • Kim, J. I., H. R. Pant, H. J. Sim, K. M. Lee, and C. S. Kim. 2014. Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater. Sci. Eng: C. 44:52–57.
  • Wagh, V. D. 2013. Propolis: a wonder bees product and its pharmacological potentials. Adv. Pharmacol. Sci. 2013:1–11.
  • Kurek-Górecka, A., A. Rzepecka-Stojko, M. Górecki, J. Stojko, M. Sosada, and G. Świerczek-Zięba. 2013. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 19:78–101.
  • Jaganathan, S. K., M. P. Mani, G. Nageswaran, N. P. Krishnasamy, and M. Ayyar. 2018. Single stage electrospun multicomponent scaffold for bone tissue engineering application. Polym. Test 70:244–254.
  • Prabhakaran, M. P., J. Venugopal, and S. Ramakrishna. 2009. Electrospun nanostructured scaffolds for bone tissue engineering. Acta. Biomater. 5:2884–2893.
  • Unnithan, A. R., P. B. T. Pichiah, G. Gnanasekaran, K. Seenivasan, N. A. M. Barakat, Y.-S. Cha, C.-H. Jung, A. Shanmugam, and H. Y. Kim. 2012. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloids. Surf. A: Physicochem. Eng. Asp. 415:454–460.
  • Tijing, L. D., M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C. H. Park, D. W. Kim, and C. S. Kim. 2012. Antibacterial and superhydrophilic electrospun polyurethane scaffold fibers containing tourmaline nanoparticles. Chem. Eng. J. 197:41–48.
  • Wei, J., T. Igarashi, N. Okumori, T. Igarashi, T. Maetani, B. Liu, and M. Yoshinari. 2009. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 4:045002.
  • Hassan, M. I., N. Sultana, and S. Hamdan. 2014. Bioactivity assessment of poly (ε-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J. Nanomater. 8:1–6.
  • Ribeiro, C., V. Sencadas, A. C. Areias, F. M. Gama, and S. Lanceros‐Méndez. 2015. Surface roughness dependent osteoblast and fibroblast response on poly (l‐lactide) films and electrospun membranes. J. Biomed. Mater. Res. 103:2260–2268.
  • Shanmugavel, S., V. J. Reddy, S. Ramakrishna, B. S. Lakshmi, and V. G. Dev. 2014. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bonetissue engineering. J. Biomater. Appl. 29:46–58.
  • Szycher, M. 1991. High performance biomaterials: A complete guide to medical and pharmceutical applications. Boca Raton: CRC Press.
  • Jaganathan, S. K., M. P. Mani, M. Ayyar, and E. Supriyanto. 2017. Engineered electrospun polyurethane and castor oil nanocomposite scaffolds for cardiovascular applications. J. Mater. Sci. 52:10673–10685.
  • Miguel, S. P., M. P. Ribeiro, P. Coutinho, and I. J. Correia. 2017. Electrospun polycaprolactone/Aloe vera_Chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 9:183.
  • Jaganathan, S. K., M. P. Mani, S. K. Palaniappan, and R. Rathanasamy. 2018. Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications. J. Polym. Res. 25:146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.