408
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modification of collagen-chitosan membrane by oxidation sodium alginate and in vivo/ in vitro evaluation for wound dressing application

, , , , , , & show all
Pages 619-629 | Received 18 Jul 2019, Accepted 24 Jul 2019, Published online: 06 Aug 2019

References

  • Fang, H., J. Wang, L. Li, L. Xu, Y. Wu, Y. Wang, X. Fei, J. Tian, and Y. Li. 2019. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 365:153–164.
  • Hafezi, F., N. Scoutaris, D. Douroumis, and J. Boateng. 2019. 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic woundsJ. Int. J. Pharm. 560:406–415.
  • De, S. K., E. D. Reis, and M. D. Kerstein. 2002. Wound treatment with human skin equivalent. J. Am. Podiatr. Med. Assoc. 92:19–23.
  • Frykberg, R. G., and J. Banks. 2015. Challenges in the treatment of chronic wounds. Adv. Wound Care (New Rochelle). 4:560–582.
  • McCarty, S. M., and S. L. Percival. 2013. Proteases and delayed wound healing. Adv. Wound Care (New Rochelle). 2:438–447.
  • Mogoşanu, G. D., and A. M. Grumezescu. 2014. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463:127–136.
  • Boateng, J. S., K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston. 2008. Wound healing dressings and drug delivery systems. J. Pharm. Sci. 97:2892–2923.
  • Girão, A. F., G. Gonçalves, K. S. Bhangra, J. B. Phillips, J. Knowles, G. Irurueta, M. K. Singh, I. Bdkin, A. Completo, and P. A. A. P. Marques. 2016. Electrostatic self-assembled graphene oxide-collagen scaffolds towards a three-dimensional microenvironment for biomimetic applications. RSC Adv. 6:49039–49051.
  • Gurtner, G. C., S. Werner, Y. Barrandon, and M. T. Longaker. 2008. Wound repair and regeneration. Nature 453:314–321.
  • Han, G., and R. Ceilley. 2017. Chronic wound healing: a review of current management and treatments. Adv. Ther. 34:599–610.
  • Ahmed, S., and S. Ikram. 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10:27–37.
  • Miguel, S. P., A. F. Moreira, and I. Correia. 2019. Chitosan based-asymmetric membranes for wound healing: a review. J., Int. J. Biol. Macromol 127:460–475.
  • Wang, X., G. Wang, L. Liu, and D. Zhang. 2016. The mechanism of a chitosan-collagen composite film used as biomaterial support for MC3T3-E1 cell differentiation. Sci. Rep. 6:39322.
  • Taravel, M. N., and A. Domard. 1993. Relation between the physicochemical characteristics of collagen and its interactions with chitosan. Biomaterials 14:930.
  • Kozlowska, J., and A. Sionkowska. 2015. Effects of different crosslinking methods on the properties of collagen–calcium phosphate composite material. Int. J. Biol. Macromol. 74:397.
  • Han, B., J. Jaurequi, B. Wei Tang, and M. Nimni. 2003. Chronic wound healing: a review of current management and treatments. J. Biomed. Mater. Res. 34:599–610.
  • Hu, Y., L. Liu, Z. Gu, W. Dan, N. Dan, and X. Yu. 2014. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr. Polym. 102:324.
  • Aderibigbe, B. A., and B. Buyana. 2018. Alginate in wound dressings. Pharmaceutics 10:42.
  • Liu, X., N. Dan, and W. Dan. 2016. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. Int. J. Biol. Macromol. 88:179–188.
  • Hu, Y., L. Liu, W. Dan, N. Dan, Z. Gu, and X. Yu. 2013. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix. Int. J. Biol. Macromol. 55:221.
  • Liu, T., W. Dan, N. Dan, X. Liu, X. Liu, and X. Peng. 2017. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater. Sci. Eng. A. 77:202–211.
  • Tronci, G., A. Doyle, S. J. Russell, and D. J. Wood. 2013. Triple-helical collagen hydrogels via covalent aromatic functionalization with 1,3-Phenylenediacetic acid. J. Mater. Chem. B. 1:5478–5488.
  • Wei, H., W. Zheng, J. Diakur, and L. I. Wiebe. 2011. Confocal laser scanning microscopy (CLSM) based evidence for cell permeation by Mono-4-(N-6-deoxy-6-amino-β-cyclodextrin)-7-nitrobenzofuran (NBD-β-CyD). Int. J. Pharm. 403:15–22.
  • Andrews, M. E., J. Murali, C. Muralidharan, W. Madhulata, and R. Jayakumar. 2003. Interaction of collagen with corilagin. Colloid Polym. Sci. 281:766–770.
  • Shoulders, M. D., and R. T. Raines. 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929.
  • Tronci, G., S. J. Russell, and D. J. Wood. 2013. Photo-active collagen systems with controlled triple helix architecture. J. Mater. Chem. B. 1:3705–3715.
  • Violeta Ghica, M., M. Georgiana Albu, and L. Popa. 2009. Drug delivery systems based on collagen-tannic acid matrices. Rev. Roum. Chim. 54:1103.
  • He, L., C. Mu, J. Shi, Q. Zhang, B. Shi, and W. Lin. 2011. Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol. 48:354.
  • Balakrishnan, B., and A. Jayakrishnan. 2005. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951.
  • Ryffel, G. U. 2012. Gene-manipulated plants compatible with organic farming. Biotechnol. J. 7:1328.
  • Demetgul, C., and N. Beyazit. 2018. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr. Polym. 181:812–817.
  • Chang, J.-J., Y.-H. Lee, M.-H. Wu, M.-C. Yang, and C.-T. Chien. 2012. Preparation of electrospun alginate fibers with chitosan sheath. Carbohydr. Polym. 87:2357–2361.
  • Pietrucha, K., E. Marzec, and M. Kudzin. 2016. Structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair. Int. J. Biol. Macromol. 92:1298–1306.
  • Balakrishnan, B., M. Mohanty, P. R. Umashankar, and A. Jayakrishnan. 2005. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342.
  • Zhang, E., J. Li, Y. Zhou, P. Che, B. Ren, Z. Qin, L. Ma, J. Cui, H. Sun, and F. Yao. 2017. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomaterialia. 55:420–433.
  • Li, W., J. Zhou, and Y. Xu. 2015. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 3:617–620.
  • Jedrzejczak-Silicka, M., and E. Mijowska. 2018. General cytotoxicity and its application in nanomaterial analysis. In Cytotoxicity. London, UK: IntechOpen.
  • Cao, Z.-D., D.-M. Jiang, L. Yan, and J. Wu. 2016. Biosafety of the novel vancomycin-loaded bone-like hydroxyapatite/poly-amino acid bony scaffold. Chin. Med. J. 129:194.
  • Vracko, R., and E. P. Benditt. 1972. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55:406–419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.