153
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of methoxy position on dynamic mechanical and shape memory properties of methoxyphenol-based polybenzoxazines

, , , , , & show all
Pages 397-408 | Received 05 Mar 2020, Accepted 14 Jul 2020, Published online: 31 Jul 2020

References

  • Ishida, H. 2001. Overview and historical background of polybenzoxazine research. In Handbook of Benzoxazine Resins, eds. H. Ishida and T. Agag, pp. 3–81. Amsterdam: Elsevier.
  • Kiskan, B., and Y. Yagci. 2018. Benzoxazine resins as smart materials and future perspectives. In Thermosets: Structure, Properties, and Applications, Second Edition, ed. Q. Guo, pp. 543–576. Amsterdam: Elsevier.
  • Ning, X., and H. Ishida. 1994. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J. Polym. Sci. A Polym. Chem. 32:1121–1129.
  • Takeichi, T., T. Kano, and T. Agag. 2005. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 46:12172–12180.
  • Lin, C. H., S. L. Chang, C. W. Hsieh, and H. H. Lee. 2008. Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer. 49:1220–1229.
  • Takeichi, T., T. Kano, T. Agag, T. Kawauchi, amd, and N. Furukawa. 2010. Preparation of high molecular weight polybenzoxazine prepolymers containing siloxane unites and properties of their thermosets. J. Polym. Sci. A Polym. Chem. 48:5945–5952.
  • Liu, Y., Z. Yue, and J. Gao. 2010. Synthesis, characterization, and thermally activated polymerization behavior of bisphenol-S/aniline based benzoxazine. Polymer. 51:3722–3729.
  • Liu, Y. L. 2012. Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells. Polym. Chem. 3:1373–1383.
  • Zhang, K., Z. Shang, C. J. Evans, L. Han, H. Ishida, and S. Yang. 2018. Benzoxazine atropisomers: intrinsic atropisomerization mechanism and conversion to high performance thermosets. Macromolecules. 51:7574–7585.
  • Wang, T., X. Y. He, A. Q. Dayo, J. Y. Wang, J. Wang, and W. B. Liu. 2019. Synthesis of novel multi-functional fluorene-based benzoxazine resins: polymerization behaviour, curing kinetics, and thermal properties. React. Funct. Polym. 143:104344.
  • Kaya, G., B. Kiskan, and Y. Yagci. 2019. Coumarines as masked phenols for amide functional benzoxazines. Polym. Chem. 10:1268–1275.
  • Takeichi, T., T. Kawauchi, and T. Agag. 2008. High performance polybenzoxazines as a novel type of phenolic resin. Polym. J. 40:1121–1131.
  • Kiskan, B., N. N. Ghosh, and Y. Yagci. 2011. Polybenzoxazine-based composites as high-performance materials. Polym. Int. 60:167–177.
  • Kobzar, Y. L., I. M. Tkachenko, V. N. Bliznyuk, and V. V. Shevchenko. 2018. Fluorinated polybenzoxazines as advanced phenolic resins for leading-edge applications. React. Funct. Polym. 133:71–92.
  • Kiskan, B. 2018. Adapting benzoxazine chemistry for unconventional applications. React. Funct. Polym. 129:76–88.
  • Kiskan, B., M. Arslan, O. S. Taskin, and Y. Yagci. 2017. Polybenzoxazines as self-healing materials. In Advanced and Emerging Polybenzoxazine Science and Technology, eds. H. Ishida, and P. Froimowicz, pp. 1019–1028. Amsterdam: Elsevier.
  • Kiskan, B., and Y. Yagci. 2014. Self-healing of poly(propylene oxide)-polybenzoxazine thermosets by photoinduced coumarine dimerization. J. Polym. Sci. Part A: Polym. Chem. 52:2911–2918.
  • Zhang, L., Z. Zhao, Z. Dai, L. Xu, F. Fu, T. Endo, and X. Liu. 2019. Unexpected healability of an ortho-blocked polybenzoxazine resin. ACS Macro Lett. 8:506–511.
  • Tiptipakorn, S., and S. Rimdusit. 2017. Shape memory polymers from polybenzoxazine-modified polymers. In Advanced and Emerging Polybenzoxazine Science and Technology, eds. H. Ishida and P. Froimowicz, pp. 1029–1049. Amsterdam: Elsevier.
  • Liu, Y., J. Huang, X. Su, M. Han, H. Li, M. Run, H. Song, and Y. Wu. 2016. Shape memory polybenzoxazines based on polyetheramine. React. Funct. Polym. 102:62–69.
  • Liu, Y., Y. Li, C. Zhang, R. Wang, M. Run, and H. Song. 2016. Shape memory polybenzoxazines based on a siloxane-containing diphenol. J. Polym. Sci. Part B: Polym. Phys. 54:1255–1266.
  • Su, X., S. Song, C. Zhang, J. Huang, Y. Liu, M. Run, and Y. Wu. 2016. Dynamic mechanical and shape memory properties of polybenzoxazines based on aminopropyl-terminated siloxanes. J. Appl. Polym. Sci. 133:44121.
  • Liu, Y., R. Wang, Q. An, X. Su, C. Li, S. Shen, and G. Huo. 2017. The F···H hydrogen bonding effect on the dynamic mechanical and shape memory properties of a fluorine-containing polybenzoxazine. Macromol. Chem. Phys. 218:1700079.
  • Liu, Y., S. Song, X. Su, A. Wang, S. Shen, and C. Li. 2017. Effect of methyl position on the dynamic mechanical and shape-memory properties of cresol-based polybenzoxazines. J. Appl. Polym. Sci. 134:45443.
  • Zhang, S., Y. Peng, W. Xue, S. Shen, C. Li, Z. Li, and Y. Liu. 2019. Synthesis, dynamic mechanical properties, and shape memory effect of polybenzoxazines based on monofluorophenol isomers and polyetheramines. Polymer. 166:169–177.
  • Arslan, M., B. Kiskan, and Y. Yagci. 2018. Benzoxazine-based thermoset with autonomous self-healing and shape recovery. Macromolecules. 51:10095–10103.
  • Rimdusit, S., M. Lohwerathama, K. Hemvichian, P. Kasemsiri, and I. Dueramae. 2013. Shape memory polymers from benzoxazine-modified epoxy. Smart Mater. Struct. 22:075033.
  • Erden, N., and S. C. Jana. 2013. Synthesis and characterization of shape-memory polyurethane–polybenzoxazine compounds. Macromol. Chem. Phys. 214:1225–1237.
  • Schäfer, H., A. Hartwig, and K. Koschek. 2018. The nature of bonding matters: benzoxazine based shape memory polymers. Polymer. 135:285–294.
  • Schäfer, H., A. Kolberg, M. Gockeln, R. Kun, B. N. Balzer, and K. Koschek. 2019. Influence of free PCL in PCL/PBA-a copolymers and blends on morphology, thermo-mechanical and shape memory properties. Polym. Test. 77:105888.
  • Xie, T. 2011. Recent advances in polymer shape memory. Polymer. 52:4985–5000.
  • Liu, C., H. Qin, and P. T. Mather. 2007. Review of progress in shape-memory polymers. J. Mater. Chem. 17:1543–1558.
  • Zhao, Q., H. J. Qi, and T. Xie. 2015. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50:79–120.
  • Brunovska, Z., J. P. Liu, and H. Ishida. 1999. 1,3,5-Triphenylhexahydro-1,3,5-triazine–active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol. Chem. Phys. 200:1745–1752.
  • Coeur-Tourneur, C., A. Cassez, and J. C. Wenger. 2010. Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds. J. Phys. Chem. A. 114:11645–11650.
  • Ishida, H., and D. P. Sanders. 2001. Regioselectivity of the ring-opening polymerization of monofunctional alkyl-substituted aromatic amine-based benzoxazines. Polymer. 42:3115–3125.
  • Wang, J., X. Y. He, J. T. Liu, W. B. Liu, and L. Yang. 2013. Investigation of the polymerization behavior and regioselectivity of fluorene diamine-based benzoxazines. Macromol. Chem. Phys. 214:617–628.
  • Han, L., D. Iguchi, P. Gil, T. R. Heyl, V. M. Sedwick, C. R. Arza, S. Ohashi, D. J. Lacks, and H. Ishida. 2017. Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated, 15N isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations. J. Phys. Chem. A. 121:6269–6282.
  • Dunkers, J., and H. Ishida. 1995. Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the fingerprint region. Spectrochim. Acta A. 51:1061–1074.
  • Katritzky, A. R., and B. J. Ridgewell. 1964. Infrared absorption of substituents in heteroaromatic systems—VIII [1,2]: a diagnostic test for the orientation of methoxy and nitro groups in azanaphthalene systems. Spectrochim. Acta. 20:589–591.
  • Lendlein, A., and S. Kelch. 2002. Shape-memory polymers. Angew. Chem. Int. Ed. 41:2034–2057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.