231
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of silver nanoflakes on chitosan hydrogel beads and their antimicrobial potential

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 421-430 | Received 13 Mar 2020, Accepted 22 Jul 2020, Published online: 10 Aug 2020

References

  • Kim, S. H., H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39:77–85.
  • Liu, D., and H. Xiang. 2017. Research on mechanical properties of silver-bearing antibacterial duplex stainless steel. AIP Conference Proceedings, 1829.
  • Vaidya, M. Y., A. J. McBain, J. A. Butler, C. E. Banks, and K. A. Whitehead. 2017. Antimicrobial efficacy and synergy of metal ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter Baumannii in planktonic and biofilm phenotypes. Sci. Rep. 7:5911.
  • Zulkifli, F. H., F. S. J. Hussain, S. S. Zeyohannes, M. S. B. A. Rasad, and M. M. Yusuff. 2017. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 79:151–160. doi:10.1016/j.msec.2017.05.028
  • Liu, C., L. Geng, Y. Yu, Y. Zhang, B. Zhao, and Q. Zhao. 2018. Mechanisms of the enhanced antibacterial effect of Ag-TiO2 coatings. Biofouling 34:190–199. doi:10.1080/08927014.2017.1423287
  • Asmatulu, R., P. Nguyen, and E. Asmatulu. 2013. Nanotechnology safety in the automotive industry. In Nanotechnology Safety, ed. R. Asmatulu, 57–72. Burlington, MA: Elsevier.
  • Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74:2171–2178. doi:10.1128/AEM.02001-07
  • Valappil, S. P., D. M. Pickup, D. L. Carroll, C. K. Hope, J. Pratten, R. J. Newport, M. E. Smith, M. Wilson, and J. C. Knowles. 2007. Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 51:4453–4461. doi:10.1128/AAC.00605-07
  • Natarajan, D., and M. S. Kiran. 2019. Fabrication of juglone functionalized silver nanoparticle stabilized collagen scaffolds for pro-wound healing activities. Int. J. Biol. Macromol. 124:1002–1015. doi:10.1016/j.ijbiomac.2018.11.221
  • Memic, A., M. Aldhahri, A. Tamayol, P. Mostafalu, M. Abdel-Wahab, M. Samandari, K. Moghaddam, N. Annabi, S. Bencherif, and A. Khademhosseini. 2017. Nanofibrous silver-coated polymeric scaffolds with tunable electrical properties. Nanomaterials 7:63. doi:10.3390/nano7030063
  • Wang, L. S., C. Y. Wang, C. H. Yang, C. L. Hsieh, S. Y. Chen, C. Y. Shen, J. J. Wang, and K. S. Huang. 2015. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int. J. Nanomedicine 10:2685–2696. doi:10.2147/IJN.S77410
  • Govindan, S., E. A. K. Nivethaa, R. Saravanan, V. Narayanan, and A. Stephen. 2012. Synthesis and characterization of chitosan-silver nanocomposite. Appl. Nanosci. 2:299–303. doi:10.1007/s13204-012-0109-5
  • González-Campos, J. B., J. D. Mota-Morales, S. Kumar, D. Zárate-Triviño, M. Hernández-Iturriaga, Y. Prokhorov, M. V. Lepe, Z. Y. García-Carvajal, I. C. Sanchez, and G. Luna-Bárcenas. 2013. New insights into the bactericidal activity of Chitosan-Ag bionanocomposite: the role of the electrical conductivity. Colloids Surf. B Biointerfaces 111:741–746. doi:10.1016/j.colsurfb.2013.07.003
  • Kaur, P., A. Choudhary, and R. Thakur. 2013. Synthesis of chitosan-silver nanocomposites and their antibacterial activity. Int. J. Sci. Eng. Res. 4:869–872.
  • You, C., Q. Li, X. Wang, P. Wu, J. K. Ho, R. Jin, L. Zhang, H. Shao, and C. Han. 2017. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 7:1–11.
  • Mazur, M. 2004. Electrochemically prepared silver nanoflakes and nanowires. Electrochem. Commun. 6:400–403. doi:10.1016/j.elecom.2004.02.011
  • Huang, S. C., K. M. Hsieh, T. W. Chang, Y. C. Chen, C. T. Ricky Yu, T. C. Lu, C. F. Lin, T. Y. Yu, T. T. Wang, and H. Chen. 2016. ZnO nanoflakes on silver wires with antibacterial effects. Ceram. Int. 42:7848–7851. doi:10.1016/j.ceramint.2016.01.020
  • Yuan, K., L. Chen, and Y. Chen. 2014. Optical engineering of uniformly decorated graphene oxide nanoflakes via in situ growth of silver nanoparticles with enhanced plasmonic resonance. ACS Appl. Mater. Interfaces 6:21069–21077. doi:10.1021/am505916q
  • Kaźmierczak, D., K. Guzińska, and M. Dymel. 2016. Antibacterial activity of PLA fibres estimated by quantitative methods. F&Tinee. 24:126–130. doi:10.5604/12303666.1191437
  • Gonçalves, V. L., M. C. M. Laranjeira, V. T. Fávere, and C. R. Pedrosa. 2005. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polímeros: Ciência e Tecnologia 15:6–12. doi:10.1590/S0104-14282005000100005
  • Kamburov, M., and I. Lalov. 2012. Preparation of chitosan beads for trypsin immobilization. Biotechnol. Biotechnol. Equip. 26:156–163. doi:10.5504/50YRTIMB.2011.0029
  • Kedi, P. B. E., F. E. Meva, L. Kotsedi, E. L. Nguemfo, C. B. Zangueu, A. A. Ntoumba, H. E. A. Mohamed, A. B. Dongmo, and M. Maaza. 2018. Eco-Friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int. J. Nanomedicine 13:8537–8548. doi:10.2147/IJN.S174530
  • Mandal, S., S. K. Arumugam, R. Pasricha, and M. Sastry. 2005. Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates. Bull. Mater. Sci. 28:503–510. doi:10.1007/BF02711244
  • Philip, D. 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimen. Syst. Nanostruct. 42:1417–1424. doi:10.1016/j.physe.2009.11.081
  • Alzoubi, F. Y., and S. A. A. Bidier. 2013. Characterization and aggregation of silver nanoparticles dispersed in an aqueous solution. Chinese J. Phys. 51:378–387.
  • Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339:2693–2700. doi:10.1016/j.carres.2004.09.007
  • Dahmane, E. M., M. Taourirte, N. Eladlani, and M. Rhazi. 2014. Extraction and characterization of chitin and chitosan from Parapenaeus longirostris from moroccan local sources. Int. J. Polym. Anal. Charact. 19:342–351. doi:10.1080/1023666X.2014.902577
  • Zhang, S., L. Xia, C. Ding, L. Wen, W. Wan, and G. Chen. 2016. Biocompatible nanocarriers that respond to oxidative environments via interactions between chitosan and multiple metal ions. Int. J. Nanomedicine 11:2769–2784. doi:10.2147/IJN.S105339
  • Ali, S. W., S. Rajendran, and M. Joshi. 2011. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr. Polym. 83:438–446. doi:10.1016/j.carbpol.2010.08.004
  • Manukumar, H. M., S. Umesha, and H. N. N. Kumar. 2017. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-Infective agents against perilous pathogens. Int. J. Biol. Macromol. 102:1257–1265. doi:10.1016/j.ijbiomac.2017.05.030
  • Kalaivani, R., M. Maruthupandy, T. Muneeswaran, A. Hameedha Beevi, M. Anand, C. M. Ramakritinan, and A. K. Kumaraguru. 2018. Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Front. Lab. Med. 2:30–35. doi:10.1016/j.flm.2018.04.002
  • Kaviya, S., J. Santhanalakshmi, and B. Viswanathan. 2012. Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract. Mater. Lett. 67:64–66. doi:10.1016/j.matlet.2011.09.023
  • Dada, A. O., F. A. Adekola, O. S. Adeyemi, O. M. Bello, A. C. Oluwaseun, O. J. Awakan, and F.-A. A. Grace. 2018. Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. In Silver Nanoparticles – Fabrication, Characterization and Applications, ed. K. Maaz. London: InTech.
  • Goy, R. C., D. D. Britto, and O. B. G. Assis. 2009. A review of the antimicrobial activity of chitosan. Polim. Cienc. e Tecnol. 19:241–247. doi:10.1590/S0104-14282009000300013
  • Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52:662–668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  • Li, X. F., X. Q. Feng, S. Yang, T. P. Wang, and Z. X. Su. 2008. Effects of molecular weight and concentration of chitosan on antifungal activity against Aspergillus niger. Iran. Polym. J. 17:843–852.
  • Ohtakara, A., M. Izume, and M. Mitsutomi. 1988. Action of microbial chitinases on chitosan with different degrees of deacetylation. Agric. Biol. Chem. 52:3181–3182. doi:10.1271/bbb1961.52.3181
  • Zhang, D., J. M. Bland, D. Xu, and S. Chung. 2015. Degradation of chitin and chitosan by a recombinant chitinase derived from a virulent Aeromonas hydrophila isolated from diseased channel catfish. AIM. 05:611–619. doi:10.4236/aim.2015.59064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.