250
Views
12
CrossRef citations to date
0
Altmetric
Articles

Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes

, &
Pages 354-363 | Received 14 Sep 2020, Accepted 13 Feb 2021, Published online: 08 Mar 2021

References

  • Zhou, Y., N. Li, L. Sun, X. Yu, C. Liu, L. Yang, S. Zhang, and Z. Wang. 2019. Multi-layer-stacked Co9S8 micro/nanostructure directly anchoring on carbon cloth as a flexible electrode in supercapacitors. Nanoscale. 11:7457–7464.
  • Yu, L., L. Hu, B. Anasori, Y. T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, and B. Xu. 2018. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3:7, 1597–1603.
  • Dubal, P. D., N. R. Chodankar, D.-H. Kim, and P. Gomez-Romero. 2018. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47:2065–2129.
  • Jost, K., C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi. 2011. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4:5060–5067.
  • Beguin, F., K. Szostak, G. Lota, and E. Frackowiak. 2005. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv. Mater. 17:2380–2384.
  • Wang, Y., S. Tang, S. Vongehr, J. A. Syed, X. Wang, and X. Meng. 2016. High-performance flexible solid-state carbon cloth supercapacitors based on highly processible N-graphene doped polyacrylic acid/polyaniline composites. Sci. Rep. 6:12883.
  • Yu, X., N. Li, S. Zhang, C. Liu, L. Chen, S. Han, Y. Song, M. Han, and Z. Wang. 2020. Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power Sources. 478:229075.
  • Dai, S., Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, and M. Liu. 2018. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources. 387:43–48.
  • Cho, S., K.-H. Shin, and J. Jang. 2013. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl. Mater. Interfaces. 5:9186–9193.
  • Meng, Q., K. Cai, Y. Chen, and L. Chen. 2017. Research progress on conducting polymer-based supercapacitor electrode materials. Nano Energy. 36:268–285.
  • Snook, G. A., P. Kao, and A. S. Best. 2011. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources. 196:1–12.
  • Xu, Z., Z. Zhang, H. Yin, S. Hou, H. Lin, J. Zhou, and S. Zhuo. 2020. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 10:3122–3129.
  • Ishaq, S., M. Moussa, F. Kanwal, M. Ehsan, M. Saleem, T. N. Van, and D. Losic. 2019. Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors. Sci. Rep. 9:4430.
  • Huang, J., and B. R. Kaner. 2004. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126:851–855.
  • Yang, X., Z. Zhu, Y. T. Dai, and Y. Lu. 2005. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 26:1736–1740.
  • Park, W. H., T. Kim, J. Huh, M. Kang, J. E. Lee, and H. Yoon. 2012. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano. 6:7624–7633.
  • Li, M., W. Li, J. Liu, and J. Yao. 2013. Preparation and characterization of PPy with methyl orange as soft template. J. Mater. Sci: Mater. Electron. 24:906–910.
  • Trchova, M., Z. Moravkova, M. Blaha, and J. Stejskal. 2014. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta 122:28–38.
  • Zhang, L., and M. Wan. 2003. Self assembly of polyaniline-from nanotubes to hollow microspheres. Adv. Funct. Mater. 13:815–820.
  • Cochet, M., G. Louarn, S. Quillard, J. P. Buisson, and S. Lefrant. 2000. A theoretical and experimental vibrational study of emeraldine in salt form. Part II. J. Raman Spectrosc. 31:1041–1049.
  • Trchova, M., and J. Stejskal. 2018. Resonance raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body. J. Phys. Chem. A. 122:9298–9306.
  • Gupta, S. 2008. Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J. Raman Spectrosc. 39:1343–1355.
  • Šetka, M., R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavová, and S. Vallejos. 2019. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 9:8465.
  • Liu, X., N. Wen, X. Wang, and Y. Zheng. 2015. A high-performance hierarchical graphene@polyaniline@graphene sandwich containing hollow structures for supercapacitor electrodes. ACS Sustainable Chem. Eng. 3:475–482.
  • Mondal, S., U. Rana, and S. Malik. 2017. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J. Phys. Chem. C. 121:7573–7583.
  • Sivakkumar, S. R., W. J. Kim, J.-A. Choi, D. R. MacFarlane, M. Forsyth, and D.-W. Kim. 2007. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources. 171:1062–1068.
  • Asen, P., and S. Shahrokhian. 2017. A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam. J. Phys. Chem. C. 12:6508–6519.
  • Liu, L., H. Zhao, Y. Wang, Y. Fang, J. Xie, and Y. Lei. 2018. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28:1705107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.