369
Views
12
CrossRef citations to date
0
Altmetric
Articles

Fracture toughness of flax braided yarn woven PLA composites

& ORCID Icon
Pages 364-379 | Received 16 Sep 2020, Accepted 15 Feb 2021, Published online: 15 Mar 2021

References

  • Liu, W., T. Chen, M. Fei, R. Qiu, D. Yu, T. Fu, and J. Qiu. 2019. Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Compos. Part B. 171:87–95.
  • Zuccarello, B., and G. Marannano. 2018. Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater. Des. 149:87–100.
  • Borchani, K. E., C. Carrot, and M. Jaziri. 2019. Rheological behavior of short alfa fibers reinforced Mater-Bi® biocomposites. Polym. Test. 77:105895.
  • Zhu, Z., C. Ye, W. Fu, and H. Wu. 2016. Improvement on mechanical and thermal properties of polylactic acid (PLA) biocomposites due to the addition of hybrid sisal fibers and diatomite particles. Int. J. Polym. Anal. Charact. 21:365–377.
  • Venkatram, B., C. Kailasanathan, P. Seenikannan, and S. Paramasamy. 2016. Study on the evaluation of mechanical and thermal properties of natural sisal fiber/GP composites reinforced with nano clay. Int. J. Polym. Anal. Charact 21:647–656.
  • Mazzanti, V., M. S. D. Luna, R. Pariante, F. Mollica, and G. Filippone. 2020. Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Compos. Part A. 180:51–59.
  • Chaitanya, S., I. Singh, and J. Il. 2019. Recyclability analysis of PLA/sisal fiber biocomposites. Compos. Part B. 173:106895.
  • Prasad, C. V., P. Sudhakara, M. N. Prabhakar, A. U. R. Shah, and J.-I. Song. 2018. An investigation on the effect of silica aerogel content on thermal and mechanical properties of sisal/PLA nano composites. Polym. Compos. 39:835–840.
  • Spiridon, I., R. G. Ursu, I. Alexandra, C. Spiridon, I. Spiridon, R. G. Ursu, I. Alexandra, and C. Spiridon. 2015. New polylactic acid composites for packaging applications: mechanical properties, thermal behavior, and antimicrobial activity. Int. J. Polym. Anal. Charact. 20:681–692.
  • Ashok, B., S. Naresh, K. O. Reddy, K. Madhukar, J. Cai, L. Zhang, and A. V. Rajulu. 2014. International journal of polymer analysis and characterization tensile and thermal properties of poly (lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 19:245–255.
  • Barletta, M., E. Pizzi, M. Puopolo, and S. Vesco. 2017. Design and manufacture of degradable polymers: biocomposites of micro-lamellar talc and poly (lactic acid). Mater. Chem. Phys. 196:62–74.
  • Kaiser, M. R., H. B. Anuar, N. B. Samat, and S. B. A. Razak. 2013. Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran. Polym. J. 22:123–131.
  • Chaitanya, S., and I. Singh. 2017. Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Mater. Manuf. Process. 32:468–474.
  • Nilsuwan, K., P. Guerrero, K. D. Caba, S. Benjakul, and T. Prodpran. 2020. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll. 105:105792.
  • Farah, S., D. G. Anderson, and R. Langer. 2016. Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev. 107:367–392.
  • Moshiul Alam, A. K. M., M. D. H. Beg, M. F. Mina, A. A. Mamun, and A. K. Bledzki. 2015. Degradation and stability of green composites fabricated from oil palm empty fruit bunch fiber and polylactic acid: effect of fiber length. J. Compos. Mater. 49:3103–3114.
  • Hammiche, D., A. Boukerrou, B. Azzeddine, N. Guermazi, and T. Budtova. 2019. Characterization of polylactic acid green composites and its biodegradation in a bacterial environment. Int. J. Polym. Anal. Charact. 24:236–244.
  • Alvarez, V. A., R. A. Ruscekaite, and A. Vazquez. 2003. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibres. J. Compos. Mater. 37:1575–1588.
  • Alvarez, V., A. Vazquez, and C. Bernal. 2006. Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J. Compos. Mater. 40:21–35.
  • Islam, M. S., K. L. Pickering, and N. J. Foreman. 2010. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly (lactic acid) (PLA) composites. Polym. Degrad. Stab. 95:59–65.
  • Islam, M. S., K. L. Pickering, and N. J. Foreman. 2010. Influence of hygrothermal ageing on the physico-mechanical properties of alkali treated industrial hemp fibre reinforced polylactic acid composites. J. Polym. Environ. 18:696–704.
  • Sawpan, M. A., K. L. Pickering, and A. Fernyhough. 2011. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A. 42:310–319.
  • Pickering, K. L., M. A. Sawpan, J. Jayaraman, and A. Fernyhough. 2011. Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Compos. Part A. 42:1148–1156.
  • Rajesh, M., S. P. Singh, and J. Pitchaimani. 2018. Mechanical behavior of woven natural fiber fabric composites: effect of weaving architecture, intra-ply hybridization and stacking sequence of fabrics. J. Ind. Text. 47:938–959.
  • Goutianos, S., T. Peijs, B. Nystrom, and M. Skrifvars. 2006. Development of flax fibre based textile reinforcements for composite applications. Appl. Compos. Mater. 13:199–215.
  • Khan, G. M. A., M. Terano, M. A. Gafur, and M. S. Alam. 2016. Studies on the mechanical properties of woven jute fabric reinforced poly (L -lactic acid) composites. J. King Saud Univ. - Eng. Sci. 28:69–74.
  • Alavudeen, A., N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren. 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater. Des. 66:246–257.
  • Aruchamy, K., S. P. Subramani, S. K. Palaniappan, B. Sethuraman, and G. V. Kaliyannan. 2020. Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite. J. Mater. Res. Technol. 9:718–726.
  • Rawal, A., H. Saraswat, and A. Sibal. 2015. Tensile response of braided structures: a review. Text. Res. J. 85:2083–2096.
  • Khondker, O. A., U. S. Ishiaku, A. Nakai, and H. Hamada. 2006. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A Appl. Sci. Manuf. 37:2274–2284.
  • Rajesh, M., and J. Pitchaimani. 2017. Mechanical properties of natural fiber braided yarn woven composite: comparison with conventional yarn woven composite. J. Bionic Eng. 14:141–150.
  • Rajesh, M., and J. Pitchaimani. 2018. Dynamic mechanical and free vibration behavior of natural fiber braided fabric composite: comparison with conventional and knitted fabric composites. Polym. Compos. 39:2479–2489.
  • Kanakannavar, S., J. Pitchaimani, and M. R. Ramesh. 2020. Tribological behaviour of natural fibre 3D braided woven fabric reinforced PLA composites. J. Eng. Tribol. 234:1–12.
  • Goriparthi, B. K., K. N. S. Suman, and N. Mohan Rao. 2012. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Part A Appl. Sci. Manuf. 43:1800–1808.
  • Kumar, R., M. K. Yakabu, and R. D. Anandjiwala. 2010. Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos. Part A Appl. Sci. Manuf. 41:1620–1627.
  • Chalid, M., and I. Prabowo. 2015. The effects of alkalization to the mechanical properties of the ijuk fiber reinforced PLA biocomposites. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9:342–346.
  • Kowalczyk, M., E. Piorkowska, P. Kulpinski, and M. Pracella. 2011. Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos. Part A. 42:1509–1514.
  • Tshai, K. Y., A. B. Chai, I. Kong, M. E. Hoque, and K. H. Tshai. 2014. Hybrid fibre polylactide acid composite with empty fruit bunch: chopped glass strands. J. Compos. 2014:1–8.
  • Sato, S.,. D. Gondo, T. Wada, S. Kanehashi, and K. Nagai. 2013. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly (lactic acid) film. J. Appl. Polym. Sci. 129:1607–1617.
  • ASTM D5045-14. 2014. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, West Conshohocken, PA. www.astm.org.
  • Shen, X., J. Jia, C. Chen, Y. Li, and J.-K. Kim. 2014. Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. J. Mater. Sci. 49:3225–3233.
  • Mustapha, K., E. Annan, S. T. Azeko, M. G. Z. Kana, and W. O. Soboyejo. 2015. Strength and fracture toughness of earth- based natural fiber-reinforced composites. J. Compos. Mater. 50:1–16.
  • Agopyan, V., and V. M. John. 1992. Durability evaluation of vegetable fibre reinforced materials. Build. Res. Inf. 20:233–235.
  • Huang, Z. M. 2000. The mechanical properties of composites reinforced with woven and braided fabrics. Compos. Sci. Technol. 60:479–498.
  • Kumar, R., K. Kumar, S. Bhowmik, and G. Sarkhel. 2019. Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism. J. Polym. Res. 26:54.
  • Song, Y., D. Wang, X. Wang, L. Lin, and Y. Wang. 2011. A method for simultaneously improving the flame retardancy and toughness of PLA. Polym. Adv. Technol. 22:2295–2301.
  • Zhou, Y., M. Fan, and L. Chen. 2016. Interface and bonding mechanisms of plant fibre composites: an overview. Compos. Part B Eng. 101:31–45.
  • Wang, B., S. Panigrahi, L. Tabil, and W. Crerar. 2007. Pre-treatment of flax fibers for use in rotationally molded biocomposites. J. Reinf. Plast. Compos. 26:447–463.
  • Alamri, H., and I. M. Low. 2012. Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC. J. Appl. Polym. Sci. 126:E222–E232.
  • Xie, D., A. G. Salvi, C. Sun, A. M. Waas, and A. Caliskan. 2006. Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composites. J. Compos. Mater. 40:2025–2046.
  • Ren, J., Y. K. Kim, and J. Rice. 2010. Comparing the fracture toughness of 3-D braided preform composites with z- fiber-reinforced laminar composites. Text. Res. J. 81:335–343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.