112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development and application of gelatinized starches as wall materials for Lacticaseibacillus paracasei encapsulation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 684-696 | Received 02 Jun 2023, Accepted 30 Oct 2023, Published online: 15 Nov 2023

References

  • Ye, J., X. Hu, S. Luo, W. Liu, J. Chen, Z. Zeng, and C. Liu. 2018. Properties of starch after extrusion: a review. Starch Stärke 70:1700110. doi:10.1002/star.201700110
  • Kim, J. H., E. J. Tanhehco, and P. K. W. Ng. 2006. Effect of extrusion conditions on resistant starch formation from pastry wheat flour. Food Chem. 99:718–723. doi:10.1016/j.foodchem.2005.08.054
  • Ding, Q. B., P. Ainsworth, A. Plunkett, G. Tucker, and H. Marson. 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng. 73:142–148. doi:10.1016/j.jfoodeng.2005.01.013
  • Lazou, A., and M. Krokida. 2010. Structural and textural characterization of corn–lentil extruded snacks. J. Food Eng. 100:392–408. doi:10.1016/j.jfoodeng.2010.04.024
  • Manrique-Quevedo, N., R. A. González-Soto, M. Othman-Abu-Hardan, F. J. García-Suárez, and L. A. Bello-Pérez. 2007. Caracterización de mezclas de almidones de mango y plátano pregelatinizados mediante diferentes condiciones de extrusión. Agrociencia 41:637–645.
  • Menegassi, B., A. M. Pilosof, and J. A. Arêas. 2011. Comparison of properties of native and extruded amaranth (amaranthus cruentus L.–BRS alegria) flour. LWT-Food Sci. Technol. 44:1915–1921. doi:10.1016/j.lwt.2011.04.008
  • Meng, X., D. Threinen, M. Hansen, and D. Driedger. 2010. Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack. Food Res. Int. 43:650–658. doi:10.1016/j.foodres.2009.07.016
  • Thymi, S., M. K. Krokida, A. Pappa, and Z. B. Maroulis. 2005. Structural properties of extruded corn starch. J. Food Eng. 68:519–526. doi:10.1016/j.jfoodeng.2004.07.002
  • Gui, Y., S. K. Gil, and G. H. Ryu. 2012. Effects of extrusion conditions on the physicochemical properties of extruded red ginseng. Prev. Nutr. Food Sci. 17:203–209. doi:10.3746/pnf.2012.17.3.203
  • Shrestha, A. K., C. S. Ng, A. Lopez-Rubio, J. Blazek, E. P. Gilbert, and M. J. Gidley. 2010. Enzyme resistance and structural organization in extruded high amylose maize starch. Carbohydr. Polym. 80:699–710. doi:10.1016/j.carbpol.2009.12.001
  • Alonso, R., G. Grant, P. Dewey, and F. Marzo. 2000. Nutritional assessment in vitro and in vivo of raw and extruded peas (Pisum sativum L.). J. Agric. Food Chem. 48:2286–2290. doi:10.1021/jf000095o
  • Hagenimana, A., X. Ding, and T. Fang. 2006. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 43:38–46. doi:10.1016/j.jcs.2005.09.003
  • Liu, C., Y. Zhang, W. Liu, J. Wan, W. Wang, L. Wu, N. Zuo, Y. Zhou, and Z. Yin. 2011. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology. J. Cereal Sci. 54:473–480. doi:10.1016/j.jcs.2011.09.001
  • Zhang, Y., W. Liu, C. Liu, S. Luo, T. Li, Y. Liu, D. Wu, and Y. Zuo. 2014. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chem. 158:255–261. doi:10.1016/j.foodchem.2014.02.072
  • Sompong, R., S. Siebenhandl‐Ehn, E. Berghofer, and R. Schoenlechner. 2011. Extrusion cooking properties of white and coloured rice varieties with different amylose content. Starch Stärke 63:55–63. doi:10.1002/star.201000086
  • Mahasukhonthachat, K., P. A. Sopade, and M. J. Gidley. 2010. Kinetics of starch digestion and functional properties of twin-screw extruded sorghum. J. Cereal Sci. 51:392–401. doi:10.1016/j.jcs.2010.02.008
  • Waramboi, J. G., M. J. Gidley, and P. A. Sopade. 2014. Influence of extrusion on expansion, functional and digestibility properties of whole sweetpotato flour. LWT-Food Sci. Technol. 59:1136–1145. doi:10.1016/j.lwt.2014.06.016
  • Verdalet-Guzmán, I., L. Martínez-Ortiz, and F. Martínez-Bustos. 2013. Characterization of new sources of derivative starches as wall materials of essential oil by spray drying. Food Sci. Technol. (Campinas) 33:757–764. doi:10.1590/S0101-20612013000400023
  • Zhu, F. 2017. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 229:542–552. doi:10.1016/j.foodchem.2017.02.101
  • Baltrusch, K. L., M. D. Torres, H. Domínguez, and N. Flórez-Fernández. 2022. Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. Int. J. Biol. Macromol. 203:417–429. doi:10.1016/j.ijbiomac.2022.01.129
  • Gómez-Aldapa, C. A., J. Castro-Rosas, E. Rangel-Vargas, R. O. Navarro-Cortez, Z. E. Cabrera-Canales, L. Díaz-Batalla, F. Martínez-Bustos, F. A. Guzmán-Ortiz, and R. N. Falfan-Cortes. 2019. A modified achira (canna indica L.) starch as a wall material for the encapsulation of hibiscus sabdariffa extract using spray drying. Food Res. Int. 119:547–553. doi:10.1016/j.foodres.2018.10.031
  • Ocampo‐Salinas, I. O., C. A. Gómez‐Aldapa, J. Castro‐Rosas, E. A. Vargas‐León, F. A. Guzmán‐Ortiz, N. Calcáneo‐Martínez, and R. N. Falfán‐Cortés. 2020. Development of wall material for the microencapsulation of natural vanilla extract by spray drying. Cereal Chem. 97:555–565. doi:10.1002/cche.10269
  • Hoyos-Leyva, J. D., L. A. Bello-Perez, J. E. Agama-Acevedo, J. Alvarez-Ramirez, and L. M. Jaramillo-Echeverry. 2019. Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. LWT 101:526–533. doi:10.1016/j.lwt.2018.11.079
  • Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas J., C. A. Gómez-Aldapa, A. Cadena-Ramírez, O. A. Acevedo-Sandoval, A. J. Gordillo-Martínez, and R. N. Falfán-Cortés. 2018. Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT 95:216–222. doi:10.1016/j.lwt.2018.04.075
  • Muhammad, Z., R. Ramzan, R. Zhang, and M. Zhang. 2021. Resistant starch-based edible coating composites for spray-dried microencapsulation of Lactobacillus acidophilus, comparative assessment of thermal protection, in vitro digestion and physicochemical characteristics. Coatings 11:587. doi:10.3390/coatings11050587
  • Fang, S., X. Zhao, Y. Liu, X. Liang, and Y. Yang. 2019. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll. 93:102–110. doi:10.1016/j.foodhyd.2019.02.024
  • Cook, M. T., G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy. 2012. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release 162:56–67. doi:10.1016/j.jconrel.2012.06.003
  • Champagne, C. P., R. P. Ross, M. Saarela, K. F. Hansen, and D. Charalampopoulos. 2011. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. Int. J. Food Microbiol. 149:185–193. doi:10.1016/j.ijfoodmicro.2011.07.005
  • Castro‐Rosas, J., C. A. Gómez‐Aldapa, E. A. Chávez‐Urbiola, M. Hernández‐Bautista, M. L. Rodríguez‐Marín, Z. E. Cabrera‐Canales, and R. N. Falfán‐Cortés. 2021. Characterisation, storage viabilit, and application of microspheres with Lactobacillus paracasei obtained by the extrusion technique. Int. J. Of Food Sci. Tech. 56:1809–1817. doi:10.1111/ijfs.14807
  • Liu, H., M. Xie, and S. Nie. 2020. Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Front. 1:45–59. doi:10.1002/fft2.11
  • Anderson, A., H. Conway, V. Pfeifer, and E. Griffin. 1969. Gelatinization of corn grits by roll and extrusion cooking. J. Cereal Sci. 14:4–12.
  • Cortés, R. N. F., M. G. Martínez, I. V. Guzmán, S. L. A. Llano, C. R. F. Grosso, and F. M. Bustos. 2014. Evaluation of modified amaranth starch as shell material for encapsulation of probiotics. Cereal Chem. 91:300–308. doi:10.1094/CCHEM-06-13-0112-R
  • Alfaro-Galarza, O., E. O. López-Villegas, N. Rivero-Perez, D. Tapia-Maruri, A. R. Jiménez-Aparicio, H. M. Palma-Rodríguez, and A. Vargas-Torres. 2020. Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. LWT 117:108686. doi:10.1016/j.lwt.2019.108686
  • Debiagi, F., S. Mali, M. V. E. Grossmann, and F. Yamashita. 2010. Effects of vegetal fibers on properties of cassava starch biodegradable composites produced by extrusion. Ciênc. Agrotec. 34:1522–1529. doi:10.1590/S1413-70542010000600024
  • Sarawong, C., R. Schoenlechner, K. Sekiguchi, E. Berghofer, and P. K. Ng. 2014. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 143:33–39. doi:10.1016/j.foodchem.2013.07.081
  • Chen, P., F. Xie, L. Zhao, Q. Qiao, and X. Liu. 2017. Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocoll. 69:359–368. doi:10.1016/j.foodhyd.2017.03.003
  • Gandhi, N., B. Singh, P. Singh, and S. Sharma. 2021. Functional, rheological, morphological, and micro‐structural properties of extrusion‐processed corn and potato starches. Starch Stärke 73:2000140. doi:10.1002/star.202000140
  • Liu, Y., J. Chen, S. Luo, C. Li, J. Ye, C. Liu, and R. G. Gilbert. 2017. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydr. Polym. 175:265–272. doi:10.1016/j.carbpol.2017.07.084
  • Cabrera-Canales, Z. E., G. Velazquez, M. L. Rodríguez-Marín, G. Méndez-Montealvo, J. Hernández-Ávila, E. Morales-Sánchez, and C. A. Gómez-Aldapa. 2021. Dual modification of achira (canna indica L) starch and the effect on its physicochemical properties for possible food applications. J. Food Sci. Technol. 58:952–961. doi:10.1007/s13197-020-04609-w
  • Wani, I. A., G. Farooq, N. Qadir, and T. A. Wani. 2019. Physico-chemical and rheological properties of bengal gram (cicer arietinum L.) starch as affected by high temperature short time extrusion. Int. J. Biol. Macromol. 131:850–857. doi:10.1016/j.ijbiomac.2019.03.135
  • Waterschoot, J., S. V. Gomand, J. K. Willebrords, E. Fierens, and J. A. Delcour. 2014. Pasting properties of blends of potato, rice and maize starches. Food Hydrocoll. 41:298–308. doi:10.1016/j.foodhyd.2014.04.033
  • Yang, Q., Y. Yang, Z. Luo, Z. Xiao, H. Ren, D. Li, and J. Yu. 2016. Effects of lecithin addition on the properties of extruded maize starch. J. Food Process. Preserv. 40:20–28. doi:10.1111/jfpp.12579
  • Ali, S., B. Singh, and S. Sharma. 2020. Effect of processing temperature on morphology, crystallinity, functional properties, and in vitro digestibility of extruded corn and potato starches. J. Food Process. Preserv. 44:e14531. doi:10.1111/jfpp.14531
  • Singh, N., J. Singh, L. Kaur, N. S. Sodhi, and B. S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81:219–231. doi:10.1016/S0308-8146(02)00416-8
  • Benavent-Gil, Y., D. Rodrigo, and C. M. Rosell. 2018. Thermal stabilization of probiotics by adsorption onto porous starches. Carbohydr. Polym. 197:558–564. doi:10.1016/j.carbpol.2018.06.044
  • Liliana, L. U. C. A., and M. Oroian. 2020. The effect of microencapsulation and potato starch on the survival of lactobacillus strains. Food Environ. Saf. J. 19:139–147.
  • Atalar, I., and M. Dervisoglu. 2015. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT - Food Sci. Technol. 60:751–757. doi:10.1016/j.lwt.2014.10.023
  • Silva, V. M., G. S. Vieira, and M. D. Hubinger. 2014. Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Res. Int. 61:132–143. doi:10.1016/j.foodres.2014.01.052
  • Rojas-Moreno, S., F. Cárdenas-Bailón, G. Osorio-Revilla, T. Gallardo-Velázquez, and J. Proal-Nájera. 2018. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. Food Meas. 12:650–660. doi:10.1007/s11694-017-9678-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.