224
Views
0
CrossRef citations to date
0
Altmetric
Articles

Infill strategies for improving the impact behavior of polymer composites utilizing statistical and thermal analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 109-126 | Received 20 Nov 2023, Accepted 12 Feb 2024, Published online: 29 Feb 2024

References

  • Ayrilmis, N., M. Kariž, and M. Kitek Kuzman. 2019. Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament. Int. J. Polym. Anal. Charact. 24:659–666. doi:10.1080/1023666X.2019.1651547
  • Mishra, P. K., D. S. Kumar, T. Jagadesh, and K. Shukla. 2023. Experimental investigation into flexural and impact behaviour of 3D printed PETG short carbon fibre composite under solar light irradiation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 237:3597–3607. doi:10.1177/09544062221149923.
  • Singhal, I., B. Tyagi, R. Chaudhary, A. Sahai, H. Fayazfar, and R. S. Sharma. 2022. Toward an improved understanding for design of material extrusion additive manufacturing process-based 3D printers—a computational study. Adv. Theory Simul. 6:1–16.
  • Singhal, I., B. Tyagi, A. Raj, A. Jain, S. Kapoor, A. Sahai, and R. S. Sharma. 2023. Analysis of multiple Print-Head displacement mechanisms in 3D space for material extrusion machine. 3D Print. Addit. Manuf. doi:10.1089/3dp.2023.0096.
  • Vigneshwaran, K., and N. Venkateshwaran. 2019. Statistical analysis of mechanical properties of wood-PLA composites prepared via additive manufacturing. Int. J. Polym. Anal. Charact. 24:584–596. doi:10.1080/1023666X.2019.1630940
  • Raj, A., A. S. Chandrakar, B. Tyagi, A. Jain, H. Gupta, L. Bhardwaj, A. Goyal, P. K. Layal, A. Rajora, G. Malik, A. Sahai, and R. S. Sharma. 2024. Advancements in material extrusion based three-dimensional printing of sensors: a review. Int. J. Interact. Des. Manuf. doi:10.1007/s12008-023-01718-6.
  • Roberson, D. A., D. Espalin, and R. B. Wicker. 2013. 3D printer selection: a decision-making evaluation and ranking model. Virtual Phys. Prototyp. 8:201–212. doi:10.1080/17452759.2013.830939
  • Mathe, S., D. Dimonie, and M. Cristea. 2021. Thermal analysis and polarized light microscopy as methods to study the increasing of the durability of PLA designed for 3D printing. Int. J. Polym. Anal. Charact. 26:253–264. doi:10.1080/1023666X.2021.1880111
  • Pachauri, S., N. K. Gupta, and A. Gupta. 2023. Influence of 3D printing process parameters on the mechanical properties of polylactic acid (PLA) printed with fused filament fabrication: experimental and statistical analysis. Int. J. Interact. Des. Manuf. doi:10.1007/s12008-023-01424-3.
  • Tyagi, B., A. Raj, A. Sahai, and R. Swarup. 2024. Enhancing compressive strength in polymer composites utilized for application of foot prostheses. J. Polym. Res. 31. doi:10.1007/s10965-024-03880-1.
  • Tyagi, B., A. Sahai, and R. S. Sharma. 2023. Augmenting the flexural strength of polymer composites for stronger and more durable prosthetic sockets. Polym. Compos. 44:5656–5674. doi:10.1002/pc.27517.
  • Satsangee, G. R., B. Tyagi, D. K. Angajala, A. Sahai, and R. S. Sharma. 2023. Prosthetics advice, design & fabrication using digital manufacturing systems for improved healthcare systems. Parit. J. Syst. Sci. Eng. 27:22–28.
  • Yadav, P., I. Singhal, B. Tyagi, A. Sahai, and R. S. Sharma. 2020. Intensifying hands-on learning and experimentation of fused deposition modeling three-dimensional printers. Adv. Addit. Manuf. Join. 1:309–317.
  • Fodran, E., M. Koch, and U. Menon. 1996. Mechanical and dimensional characteristics of fused deposition modeling build styles. Solid Free. Fabr. Proc. 419–442.
  • Pazhamannil, R. V., P. Govindan, A. Edacherian, and H. M. Hadidi. 2022. Impact of process parameters and heat treatment on fused filament fabricated PLA and PLA-CF. Int. J. Interact. Des. Manuf. doi:10.1007/s12008-022-01082-x.
  • Tyagi, B., D. Dubey, A. Sahai, and R. Swarup Sharma. 2023. Mechanical properties evaluation of FFF-printed ABS samples based on different process parameters combined with ANOVA and regression analysis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 237:4256–4270. doi:10.1177/09544062231151540.
  • Patel, R., S. Jani, and A. Joshi. 2022. Review on multi-objective optimization of FDM process parameters for composite materials. Int. J. Interact. Des. Manuf. 17:2115–2125. doi:10.1007/s12008-022-01111-9.
  • Jain, A., A. Sahai, and R. S. Sharma. 2023. Fracture morphology and strength characteristics of poly-lactic acid and poly-ethylene terephthalate glycol composites combined with taguchi method and response surface methodology. J. Thermoplast. Compos. Mater. 0:1–31. doi:10.1177/08927057231221749
  • Jain, A., S. Upadhyay, A. Sahai, and R. S. Sharma. 2023. Reinforcement-material effects on the compression behavior of polymer composites. J. Appl. Polym. Sci. 140:e53722.
  • Jain, A., S. Kumar, A. Singh, A. Sahai, and R. S. Sharma. 2023. Comparative study of impact behavior of fused filament fabrication-printed polylactic acid composites. Nano World J. 9:470–475.
  • Sood, A. K., R. K. Ohdar, and S. S. Mahapatra. 2010. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31:287–295. doi:10.1016/j.matdes.2009.06.016
  • Masood, S. H., K. Mau, and W. Q. Song. 2010. Tensile properties of processed FDM polycarbonate material. MSF. 654-656:2556–2559. doi:10.4028/www.scientific.net/MSF.654-656.2556
  • Li, H., T. Wang, J. Sun, and Z. Yu. 2018. The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. RPJ. 24:80–92. doi:10.1108/RPJ-06-2016-0090
  • Tymrak, B. M., M. Kreiger, and J. M. Pearce. 2014. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58:242–246. doi:10.1016/j.matdes.2014.02.038
  • Cantrell, J., S. Rohde, D. Damiani, R. Gurnani, L. Disandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P. Ifju. 2016. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Proc. 2016 Annu. Conf. Exp. Appl. Mech. 3:89–105.
  • Ziemian, C., M. Sharma, and S. Ziemi. 2012. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech. Eng. doi:10.5772/34233.
  • Jain, A., A. Mishra, A. K. Dubey, A. Kumar, A. Sahai, and R. S. Sharma. 2022. Mechanical characteristics and failure morphology of FFF-printed poly lactic acid composites reinforced with carbon fibre, graphene and MWCNTs. J. Thermoplast. Compos. Mater. 36:3618–3643. doi:10.1177/08927057221133089
  • Ouhsti, M., B. El Haddadi, and S. Belhouideg. 2018. Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling. Mech. Mech. Eng. 22:895–908. doi:10.2478/mme-2018-0070
  • Jain, A., S. Upadhyay, A. Sahai, and R. S. Sharma. 2023. Comparing the flexural and morphological properties of dissimilar FFF-fabricated polymer composites. J. Thermoplast. Compos. Mater. 37:167–191. doi:10.1177/08927057231170790.
  • Chacón, J. M., M. A. Caminero, E. García-Plaza, and P. J. Núñez. 2017. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124:143–157. doi:10.1016/j.matdes.2017.03.065
  • Jain, A., A. Sahai, and R. S. Sharma. 2023. Enhancing the mechanical behaviour of fused filament fabricated carbon fibre‑reinforced poly‑lactic acid. J. Inst. Eng. Ser. D 1–8. doi:10.1007/s40033-023-00498-3.
  • McLouth, T. D., J. V. Severino, P. M. Adams, D. N. Patel, and R. J. Zaldivar. 2017. The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Addit. Manuf. 18:103–109. doi:10.1016/j.addma.2017.09.003
  • Anderson, I. 2017. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Print. Addit. Manuf. 4:110–115. doi:10.1089/3dp.2016.0054
  • Lanzotti, A., M. Grasso, G. Staiano, and M. Martorelli. 2015. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. 21:604–617. doi:10.1108/RPJ-09-2014-0135
  • Yaman, P., O. Ekşi, S. S. Karabeyoğlu, and K. Feratoğlu. 2023. Effect of build orientation on tribological and flexural properties of FDM-printed composite PLA parts. J. Reinf. Plast. Compos. 43:97–110. doi:10.1177/07316844231157790.
  • Ramkumar, P. L. 2019. Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens. IOP Conf. Ser. Mater. Sci. Eng. 491:012026.
  • Abdullah, M., and T. Abbas. 2023. Investigation and prediction of the impact of FDM process parameters on mechanical properties of PLA prints. ETJ. 0:1–9. doi:10.30684/etj.2023.140389.1466
  • Aloyaydi, B., S. Sivasankaran, and A. Mustafa. 2020. Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym. Test 87:106557. doi:10.1016/j.polymertesting.2020.106557
  • Yeşiloğlu, R., R. Özmen, and M. Günay. 2023. The effects of infill geometry and porosity ratio on mechanical properties of PLA structures produced by additive manufacturing. GMBD. 9:291–303. doi:10.30855/gmbd.0705071
  • Cho, E. E., H. H. Hein, Z. Lynn, S. J. Hla, and T. Tran. 2019. Investigation on influence of infill pattern and layer thickness on mechanical strength of PLA material in 3D printing technology. J. Eng. Sci. Res. 3:27–37.
  • Wang, P., B. Zou, S. Ding, C. Huang, Z. Shi, Y. Ma, and P. Yao. 2020. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos. B Eng. 198:108175. doi:10.1016/j.compositesb.2020.108175
  • Jain, A., K. Kant, S. K. Singh, A. Sahai, and R. S. Sharma. 2023. Process parameter tailored evaluation of FFF-fabricated carbon fibre based poly-lactic-acid composites. J. Thermoplast. Compos. Mater. 36:4365–4387. doi:10.1177/08927057231155858
  • Camargo, J. C., Á. R. Machado, E. C. Almeida, and E. F. M. S. Silva. 2019. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int. J. Adv. Manuf. Technol. 103:2423–2443. doi:10.1007/s00170-019-03532-5
  • Dickson, A. N., J. N. Barry, K. A. McDonnell, and D. P. Dowling. 2017. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 16:146–152. doi:10.1016/j.addma.2017.06.004
  • Caminero, M. A., J. M. Chacón, I. García-Moreno, and G. P. Rodríguez. 2018. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos. B Eng. 148:93–103. doi:10.1016/j.compositesb.2018.04.054
  • Costa, U. O., L. F. C. Nascimento, J. M. Garcia, W. B. A. Bezerra, and S. N. Monteiro. 2020. Evaluation of izod impact and bend properties of epoxy composites reinforced with mallow fibers. J. Mater. Res. Technol. 9:373–382. doi:10.1016/j.jmrt.2019.10.066
  • Zhou, X., J. Deng, C. Fang, W. Lei, Y. Song, Z. Zhang, Z. Huang, and Y. Li. 2021. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol. 60:27–34. doi:10.1016/j.jmst.2020.04.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.