51
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of the processing parameters on the degradation of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and modification of their molecular weight using chain extenders

ORCID Icon, , , , , & show all
Pages 347-362 | Received 15 May 2024, Accepted 14 Jun 2024, Published online: 27 Jun 2024

References

  • Nofar, M. R., and C. B. Park. 2014. Poly (lactic acid) foaming. Prog. Polym. Sci. 39:1721–1741. doi:10.1016/j.progpolymsci.2014.04.001
  • Lee, R. E., Y. Guo, H. Tamber, M. Planeta, and S. N. S. Leung. 2016. Thermoforming of polylactic acid foam sheets: crystallization behaviors and thermal stability. Ind. Eng. Chem. Res. 55:560–567. doi:10.1021/acs.iecr.5b03473
  • Reignier, J., R. Gendron, and M. Champagne. 2007. Extrusion foaming of poly(lactic acid) blown with CO2: toward 100% green material. Cell. Polym. 26:83–115. doi:10.1177/026248930702600202
  • Matuana, L., and C. Diaz. 2010. Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO2 through a Continuous-Extrusion process. Ind. Eng. Chem. Res. 49:2186–2193. doi:10.1021/ie9011694
  • Larsen, Å., and C. Neldin. 2012. Physical extruder foaming of poly(lactic acid) – processing and foam properties. Polym. Eng. Sci. 53:941–949. doi:10.1002/pen.23341
  • Lehermeier, H., and J. Dorgan. 2001. Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym. Eng. Sci. 41:2172–2184. doi:10.1002/pen.10912
  • Yu, L., G. Toikka, K. Dean, S. Bateman, Q. Yuan, C. Filippou, and T. Nguyen. 2013. Foaming behavior and cell structure of poly(lactic acid) after various modifications. Polym. Int. 62:759–765. doi:10.1002/pi.4359
  • Gu, L., Y. Xu, G. W. Fahnhorst, and C. W. Macosko. 2017. Star vs long chain branching of poly(lactic acid) with multifunctional aziridine. J. Rheol. 61:785–796. doi:10.1122/1.4985344
  • Backes, E., L. Pires, L. Costa, F. Passador, and L. Pessan. 2019. Analysis of the degradation during melt processing of PLA/biosilicate® composites. J. Compos. Sci. 3:52. doi:10.3390/jcs3020052
  • Speranza, V., A. De Meo, and R. Pantani. 2014. Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym. Degrad. Stab. 100:37–41. doi:10.1016/j.polymdegradstab.2013.12.031
  • Cairncross, R. A., J. G. Becker, S. Ramaswamy, and R. O’Connor. 2005. Moisture sorption, transport, and hydrolytic degradation in polylactide. In Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals, pp. 774–785. Denver, CO: Humana Press Inc.
  • Göttermann, S., T. Standau, S. Weinmann, V. Altstädt, and C. Bonten. 2017. Effect of chemical modification on the thermal and rheological properties of polylactide. Polym. Eng. Sci. 57:1242–1251. doi:10.1002/pen.24505
  • Dean, K. M., E. Petinakis, S. Meure, L. Yu, and A. Chryss. 2012. Melt strength and rheological properties of biodegradable poly(lactic aacid) modified via alkyl radical-based reactive extrusion processes. J. Polym. Environ. 20:741–747. doi:10.1007/s10924-012-0461-2
  • Najafi, N., M.-C. Heuzey, P. J. Carreau, D. Therriault, and C. B. Park. 2014. Rheological and foaming behavior of linear and branched polylactides. Rheol. Acta 53:779–790. doi:10.1007/s00397-014-0801-3
  • Lee Tin Sin, B. S. T. 2019. Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA, 2nd ed. Chadds Ford, PA: William Andrew.
  • Standau, T., C. Zhao, S. Murillo Castellón, C. Bonten, and V. Altstädt. 2019. Chemical modification and foam processing of polylactide (PLA). Polymers (Basel) 11:306. doi:10.3390/polym11020306
  • Meng, Q., M.-C. Heuzey, and P. J. Carreau. 2012. Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym. Degrad. Stab. 97:2010–2020. doi:10.1016/j.polymdegradstab.2012.01.030
  • Corre, Y.-M., A. Maazouz, J. Duchet, and J. Reignier. 2011. Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. J. Supercrit. Fluids 58:177–188. doi:10.1016/j.supflu.2011.03.006
  • Elhassan, A. S. M., H. A. M. Saeed, Y. A. Eltahir, Y. M. Xia, and Y. P. Wang. 2014. Modification of PLA with chain extender. Appl. Mech. Mater. 716–717:44–47. doi:10.4028/www.scientific.net/AMM.716-717.44
  • Najafi, N., M.-C. Heuzey, P. J. Carreau, D. Therriault, and C. B. Park. 2015. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. Eur. Polym. J. 73:455–465. 10.1016/j.eurpolymj.2015.11.003
  • Tuna, B., and G. Ozkoc. 2017. Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly(lactic acid). J. Polym. Environ. 25:983–993. doi:10.1007/s10924-016-0856-6
  • Yahyaee, N., A. Javadi, H. Garmabi, and A. Khaki. 2019. Effect of two-step chain extension using joncryl and PMDA on the rheological properties of poly (lactic acid). Macro. Mater. Eng. 305:1–13. doi:10.1002/mame.201900423
  • Duangphet, S., D. Szegda, J. Song, and K. Tarverdi. 2014. The effect of chain extender on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): thermal degradation, crystallization, and rheological behaviours. J. Polym. Environ. 22:1–8. doi:10.1007/s10924-012-0568-5
  • Najafi, N., M. C. Heuzey, P. Carreau, and P. Wood-Adams. 2012. Control of thermal degradation of polylactide (PLA) – clay nanocomposites using chain extenders. Polym. Degrad. Stab. 97:554–565. doi:10.1016/j.polymdegradstab.2012.01.016
  • Liu, C., and Y. Jia. 2013. Preparation of higher molecular weight poly (L-lactic acid) by chain extension. Int. J. Polym. Sci. 2013:315917. doi:10.1155/2013/315917
  • Huang, Y., C. Zhang, Y. Pan, W. Wang, L. Jiang, and Y. Dan. 2013. Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend. J. Polym. Environ. 21:375–387. doi:10.1007/s10924-012-0544-0
  • You, J., L. Lou, W. Yu, and C. Zhou. 2013. The preparation and crystallization of long chain branching polylactide made by melt radicals reaction. J. Appl. Polym. Sci. 129:1959–1970. doi:10.1002/app.38912
  • Tiwary, P., and M. Kontopoulou. 2018. Rheological characterization of long-chain branched poly(lactide) prepared by reactive extrusion in the presence of allylic and acrylic coagents. J. Rheol. 62:1071–1082. doi:10.1122/1.5025817
  • Liu, X., L. Yu, K. Dean, G. Toikka, S. Bateman, T. Nguyen, Q. Yuan, and C. Filippou. 2013. Improving melt strength of polylactic acid. Int. Polym. Process. 28:64–71. doi:10.3139/217.2667
  • Signori, F., M. Coltelli, and S. Bronco. 2009. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 94:74–82. doi:10.1016/j.polymdegradstab.2008.10.004
  • Pires, M., M. Murariu, A. M. Cardoso, L. Bonnaud, and P. Dubois. 2020. Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polym. Bull. 77:2111–2137. doi:10.1007/s00289-019-02846-4
  • Oliveira, M., E. Santos, A. Araújo, G. J. M. Fechine, A. V. Machado, and G. Botelho. 2016. The role of shear and stabilizer on PLA degradation. Polym. Test. 51:109–116. doi:10.1016/j.polymertesting.2016.03.005
  • Liu, Q.-S., M.-F. Zhu, W.-H. Wu, and Z.-Y. Qin. 2009. Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym. Degrad. Stab. 94:18–24. doi:10.1016/j.polymdegradstab.2008.10.016
  • Xiang, H., X. Wen, X. Miu, Y. Li, Z. Zhou, and M. Zhu. 2016. Thermal depolymerization mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog. Nat. Sci. Mater. Int. 26:58–64. 10.1016/j.pnsc.2016.01.007
  • Szegda, D., S. Duangphet, J. Song, and K. Tarverdi. 2014. Extrusion foaming of PHBV. J. Cell. Plast. 50:145–162. doi:10.1177/0021955X13505249
  • Rivera-Briso, A. L., and Á. Serrano-Aroca. 2018. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers. (Basel) 10:732. doi:10.3390/polym10070732
  • Rytlewski, P., M. Żenkiewicz, and R. Malinowski. 2011. Influence of dicumyl peroxide content on thermal and mechanical properties of polylactide. Int. Polym. Process. 26:580–586. doi:10.3139/217.2521
  • Amaro, L. P., H. Chen, A. Barghini, A. Corti, and E. Chiellini. 2015. High performance compostable biocomposites based on bacterial polyesters suitable for injection molding and blow extrusion. Chem. Biochem. Eng. Q. 29:261–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.