8
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of oxygen irradiation on the electrical properties of polyethylene oxide/nickel oxide composite films

, , &
Pages 385-397 | Received 20 Feb 2024, Accepted 17 Jun 2024, Published online: 05 Jul 2024

References

  • Mahdi, S. M., and M. A. Habeeb. 2023. Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym. Bull. 80:12741–12760. doi:10.1007/s00289-023-04676-x
  • Meera, K., K. Arun, and M. T. Ramesan. 2023. High performance biopolymer blend nanocomposites derived from cashew gum/polyvinyl alcohol/boehmite for flexible electronic devices. J. Appl. Polym. Sci. 140:e54300. doi:10.1002/app.54300
  • Dwech, M. H., M. A. Habeeb, and A. H. Mohammed. 2023. Fabrication and evaluation of optical characteristics of (PVA-MnO2–ZrO2) nanocomposites for nanodevices in optics and photonics. Ukr. J. Phys. 67:757–757. doi:10.15407/ujpe67.10.757
  • Ramesan, M. T., S. Sankar, A. J. Kalladi, A. C. Labeeba Abdulla, and B. K. Bahuleyan. 2024. Hydroxyapatite nanoparticles reinforced polyvinyl alcohol/chitosan blend for optical and energy storage applications. Polym. Eng. Sci. 64:1378–1390. doi:10.1002/pen.26623
  • Mahdi, S. M., and M. A. Habeeb. 2022. Fabrication and tailored structural and dielectric characteristics of (SrTiO3/NiO) nanostructure doped (PEO/PVA) polymeric blend for electronics fields. Phys. Chem. Solid St. 23:785–792. doi:10.15330/pcss.23.4.785-792
  • Ramesan, M. T., T. Anjitha, K. Parvathi, T. Anilkumar, and G. Mathew. 2018. Nano zinc ferrite filler incorporated polyindole/poly (vinyl alcohol) blend: Preparation, characterization, and investigation of electrical properties. Adv. Polym. Technol. 37:3639–3649. doi:10.1002/adv.22148
  • Ramesan, M. T., M. Varghese, J. P, and P. Periyat. 2018. Silver‐doped zinc oxide as a nanofiller for development of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites. Adv. Polym. Technol. 37:137–143. doi:10.1002/adv.21650
  • Habeeb, M. A., and Z. S. Jaber. 2022. Enhancement of structural and optical properties of CMC/PAA blend by addition of zirconium carbide nanoparticles for optics and photonics applications. East Eur. J. Phys. 4:176–182. doi:10.26565/2312-4334-2022-4-18
  • Hashim, A., A. J. Kadham Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb. 2021. Synthesis of PVA/PVP/SnO 2 nanocomposites: Structural, optical, and dielectric characteristics for pressure sensors. Nanosist. Nanomater. Nanotehnol. 19:353–362. doi:10.15407/nnn.19.02.353
  • Ramesan, M. T., K. Nushhat, K. Parvathi, and T. Anilkumar. 2019. Nickel oxide@ polyindole/phenothiazine blend nanocomposites: preparation, characterization, thermal, electrical properties and gas sensing applications. J. Mater. Sci. Mater. Electron. 30:13719–13728.
  • Elashmawi, I. S., and A. M. Ismail. 2023. Study of the spectroscopic, magnetic, and electrical behavior of PVDF/PEO blend incorporated with nickel ferrite (NiFe2O4) nanoparticles. Polym. Bull. 80:2329–2348. doi:10.1007/s00289-022-04139-9
  • Hashim, A., A. J. Kadham Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb. 2021. Structural, dielectric, and optical properties for (PVA/PVP/CuO) nanocomposites for pressure sensors. Nanosist. Nanomater. Nanotehnol. 19:91–102. doi:10.15407/nnn.19.01.091
  • Hashim, A., and M. A. Habeeb. 2018. Structural and optical properties of (biopolymer blend-metal oxide) bionanocomposites for humidity sensors. J. Bionanosci. 12:660–663. doi:10.1166/jbns.2018.1578
  • Atta, A., H. Negm, E. Abdeltwab, M. Rabia, and M. M. Abdelhamied. 2023. Facile fabrication of polypyrrole/NiOx core‐shell nanocomposites for hydrogen production from wastewater. Polym. Adv. Tech. 34:1633–1641. doi:10.1002/pat.5997
  • Ahmed, S. S., O. Amiri, K. M. Rahman, S. J. Ismael, N. S. Rasul, D. Mohammad, K. A. Babakr, and N. A. Abdulrahman. 2023. Studying the mechanism and kinetics of fuel desulfurization using CexOy/NiOx piezo-catalysts as a new low-temperature method. Sci. Rep. 13:7574. doi:10.1038/s41598-023-34329-y
  • Al-Yousef, H. A., M. R. Atta, E. Abdeltwab, A. Atta, and M. M. Abdel-Hamid. 2023. Effects of a modified argon glow plasma source on PET polymeric surface properties. Emerg. Mater. Res. 12:163–175. doi:10.1680/jemmr.22.00199
  • Atta, A., N. Al-Harbi, B. M. Alotaibi, M. A. M. Uosif, and E. Abdeltwab. 2024. Structural characteristics and dielectric properties of irradiated polyvinyl alcohol/sodium iodide composite films. Inorg. Chem. Commun. 159:111651. doi:10.1016/j.inoche.2023.111651
  • Althubiti, N. A., N. Al-Harbi, R. K. Sendi, A. Atta, and A. M. Henaish. 2023. Surface characterization and electrical properties of low energy irradiated PANI/PbS polymeric nanocomposite materials. Inorganics 11:74. doi:10.3390/inorganics11020074
  • Abdeltwab, E., and A. Atta. 2022. Plasma-induced modifications on high density polyethylene and polyethylene terephthalate. ECS J. Solid State Sci. Technol. 11:043012. doi:10.1149/2162-8777/ac66fe
  • Althubiti, N. A., A. Atta, B. M. Alotaibi, and M. M. Abdelhamied. 2022. Structural and dielectric properties of ion beam irradiated polymer/silver composite films. Surf. Innov. 11:90–100. 10.1680/jsuin.22.00010
  • Althubiti, N. A., A. Atta, N. Al-Harbi, R. K. Sendi, and M. M. Abdelhamied. 2023. Structural, characterization and linear/nonlinear optical properties of oxygen beam irradiated PEO/NiO composite films. Opt. Quant. Electron. 55:348. 10.1007/s11082-023-04600-7
  • Alotaibi, B. M., A. Atta, M. R. Atta, E. Abdeltwab, and M. M. Abdel-Hamid. 2023. Modifying the optical properties of hydrogen-beam-irradiated flexible PVA polymeric films. Surf. Innov. 12:84–95. doi:10.1680/jsuin.22.01078
  • Atta, A., H. M. Abdel-Hamid, Y. H. A. Fawzy, and M. M. El-Okr. 2019. Characterization and optimization of low-energy broad-beam ion source. Emerg. Mater. Res. 8:354–359. doi:10.1680/jemmr.19.00054
  • Hadi, S. M., and B. M. Saied. 2019. Stopping power and range of proton interaction with AL2O3, ZrO2 and SiO2. In AIP Conference Proceedings (Vol. 2201, No. 1). AIP Publishing.
  • Dey, A., S. Karan, and S. K. De. 2009. Effect of nanofillers on thermal and transport properties of potassium iodide–polyethylene oxide solid polymer electrolyte. Solid State Commun. 149:1282–1287. doi:10.1016/j.ssc.2009.05.021
  • Lee, J. H., Y. W. Noh, I. S. Jin, S. H. Park, and J. W. Jung. 2019. A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. J. Power Sourc. 412:425–432. doi:10.1016/j.jpowsour.2018.11.081
  • Sharma, M., A. Gaur, and J. K. Quamara. 2020. Effect of 80 MeV O 6+ ion irradiation on structural, morphological, dielectric, and ferroelectric properties of (1-x) PVDF/(x) BaTiO 3 nanocomposites. Ionics 26:471–481. doi:10.1007/s11581-019-03163-6
  • Paula, M. V., L. A. D. Azevedo, I. D. D. L. Silva, G. M. Vinhas, and S. Alves Junior. 2021. Effects of gamma radiation on nanocomposite films of polycaprolactone with modified MCM-48. Polímeros 31. doi:10.1590/0104-1428.20210044
  • Chaurasia, S. K., A. L. Saroj, V. K. Singh, A. K. Tripathi, A. K. Gupta, Y. L. Verma, and R. K. Singh Shalu. 2015. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv. 5. doi:10.1063/1.4927768
  • Privitera, A., M. Righetto, M. De Bastiani, F. Carraro, M. Rancan, L. Armelao, G. Granozzi, R. Bozio, and L. Franco. 2017. Hybrid organic/inorganic perovskite–polymer nanocomposites: toward the enhancement of structural and electrical properties. J. Phys. Chem. Lett. 8:5981–5986. doi:10.1021/acs.jpclett.7b03077
  • Althubiti, N. A., M. M. Abdelhamied, A. M. Abdelreheem, and A. Atta. 2022. Oxygen irradiation induced modification on the linear and nonlinear optical behavior of flexible MC/PANI/Ag polymeric nanocomposite films. Inorg. Chem. Commun. 137:109229. doi:10.1016/j.inoche.2022.109229
  • Liang, J., S. Hwang, S. Li, J. Luo, Y. Sun, Y. Zhao, Q. Sun, W. Li, M. Li, M. N. Banis, X. Li, R. Li, L. Zhang, S. Zhao, S. Lu, H. Huang, D. Su, and X. Sun. 2020. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 78:105107. doi:10.1016/j.nanoen.2020.105107
  • Raghu, S., H. Devendrappa, S. Ganesh, and S. Matteppanavar. 2023. Modification of PEO-based polymer electrolytes by electron beam irradiation for energy storage applications. Polym. Bull. 80:381–394. doi:10.1007/s00289-021-03977-3
  • Abdeltwab, E., and A. Atta. 2021. Influence of ZnO nanoadditives on the structural characteristics and dielectric properties of PVA. Int. J. Mod. Phys. B. 35:2150310. doi:10.1142/S0217979221503100
  • Atta, A. 2020. Enhanced dielectric properties of flexible Cu/polymer nanocomposite films. Surf. Innov. 9:17–24. doi:10.1680/jsuin.20.00020
  • Mahendia, S., A. Tomar, and S. Kumar. 2010. Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Compd. 508:406–411. doi:10.1016/j.jallcom.2010.08.075
  • Abdeltwab, E., and A. Atta. 2021. Structural and electrical properties of irradiated flexible ZnO/PVA nanocomposite films. Surf. Innov. 40:1–9.
  • Fawzy, Y. H. A., H. M. Abdel-Hamid, M. M. El-Okr, and A. Atta. 2018. Structural, optical and electrical properties of PET polymer films modified by low energy Ar + ion beams. Surf. Rev. Lett. 25:1850066. doi:10.1142/S0218625X1850066X
  • Priyadarshini, P., S. Senapati, S. Bisoyi, S. Samal, and R. Naik. 2023. Zn doping induced optimization of optical and dielectric characteristics of CuInSe2 nanosheets for optoelectronic device applications. J. Alloys Compd. 945:169222. doi:10.1016/j.jallcom.2023.169222
  • Latif, I., E. E. Al-Abodi, D. H. Badri, and J. Al Khafagi. 2012. Preparation, characterization and electrical study of (carboxymethylated polyvinyl alcohol/ZnO) nanocomposites. Amer. J. Polym. Sci. 2:135–140. doi:10.5923/j.ajps.20120206.01
  • Amin, G. A. M., and M. H. Abd-El Salam. 2014. Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 1:025024. doi:10.1088/2053-1591/1/2/025024
  • Abdel-Galil, A., H. E. Ali, A. Atta, and M. R. Balboul. 2014. Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J. Radiat. Res. Appl. Sci. 7:36–43. doi:10.1016/j.jrras.2013.11.004
  • Atta, A., S. Lotfy, and E. Abdeltwab. 2018. Dielectric properties of irradiated polymer/multiwalled carbon nanotube and its amino functionalized form. J. Appl. Polym. Sci. 135:46647. doi:10.1002/app.46647
  • Choudhary, S. 2017. Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Physica B. 522:48–56. doi:10.1016/j.physb.2017.07.066
  • Gupta, R., and R. Kumar. 2019. Influence of low energy ion beam implantation on Cu nanowires synthesized using scaffold-based electrodeposition. Nano-Struct. Nano-Obj. 18:100318. doi:10.1016/j.nanoso.2019.100318
  • Sahu, G., M. Das, M. Yadav, B. P. Sahoo, and J. Tripathy. 2020. Dielectric relaxation behavior of silver nanoparticles and graphene oxide embedded poly (vinyl alcohol) nanocomposite film: an effect of ionic liquid and temperature. Polymers. 12:374. doi:10.3390/polym12020374
  • Samal, S. K., B. Biswal, M. K. Mallick, R. N. P. Choudhary, and S. Bhuyan. 2022. Frequency and temperature response based electrical properties of samarium modified bismuth ferrite-lead titanate material. J. Mater. Sci. 57:9312–9322. doi:10.1007/s10853-022-07254-0
  • Jilani, W., N. Fourati, C. Zerrouki, O. Gallot-Lavallée, and H. Guermazi. 2019. Optical, dielectric properties and energy storage efficiency of ZnO/epoxy nanocomposites. J. Inorg. Organomet. Polym. 29:456–464. doi:10.1007/s10904-018-1016-3
  • Abdelhamied, M. M., A. Atta, A. M. Abdelreheem, A. T. M. Farag, and M. M. El Okr. 2020. Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci: Mater. Electron. 31:22629–22641. doi:10.1007/s10854-020-04774-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.