10
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fabrication of poly (1,4-phenylene ether ether sulfone) modified with MWCNTs/reduced (GO-oxSWCNTs) NCs for enhanced antimicrobial activities

ORCID Icon
Pages 429-446 | Received 20 Feb 2024, Accepted 04 Jul 2024, Published online: 22 Jul 2024

References

  • Neblea, I. E., A.-L. Chiriac, A. Zaharia, A. Sarbu, M. Teodorescu, A. Miron, L. Paruch, A. M. Paruch, A. G. Olaru, and T.-V. Iordache. 2023. Introducing semi-interpenetrating networks of chitosan and ammonium-quaternary polymers for the effective removal of waterborne pathogens from wastewaters. Polymers. 15:1091. doi:10.3390/polym15051091
  • Barie, P. S. 2012. Multidrug-resistant organisms and antibiotic management. Surg. Clin. North Am. 92:345–391. doi:10.1016/j.suc.2012.01.015
  • Almehmadi, S. J., K. A. Alamry, M. A. Elfaky, S. Alqarni, J. A. Samah, and M. A. Hussein. 2020. Zinc oxide doped arylidene based polyketones hybrid nanocomposites for enhanced biological activity. Mater. Res. Exp. 77:075302.
  • Balasubramaniam, B., S. Ranjan, M. Saraf, P. Kar, S. P. Singh, V. K. Thakur, A. Singh, and R. K. Gupta Prateek. 2021. Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 4:8–54. doi:10.1021/acsptsci.0c00174
  • Alqarni, S. A. 2022. Deliberated system of ternary core–shell polythiophene/ZnO/MWCNTs and polythiophene/ZnO/ox-MWCNTs nanocomposites for brilliant green dye removal from aqueous solutions. Nanocomposites 8:47–63. doi:10.1080/20550324.2022.2054209
  • Bhattacharjee, R., A. Negi, B. Bhattacharya, T. Dey, P. Mitra, S. Preetam, L. Kumar, S. Kar, S. S. Das, D. Iqbal, M. Kamal, F. Alghofaili, S. Malik, A. Dey, S. K. Jha, S. Ojha, A. C. Paiva-Santos, K. K. Kesari, and N. K. Jha. 2023. Nanotheranostics to target antibiotic-resistant bacteria: strategies and applications. OpenNano 11:100138. doi:10.1016/j.onano.2023.100138
  • Alqarni, S. A. 2022. The performance of different AgTiO 2 loading into poly (3- Nitrothiophene) for efficient adsorption of hazardous brilliant. Int. J. Polym. Sci. 2022:17.
  • Li, L., S. Li, Y. Xu, L. Ren, L. Yang, X. Liu, Y. Dai, J. Zhao, and T. Yue. 2023. Distinguishing the nanoplastic-cell membrane interface by polymer type and aging properties: translocation, transformation and perturbation. Environ. Sci. Nano. 10:440–453. doi:10.1039/D2EN00800A
  • Wang, L., M. Pagett, and W. Zhang. 2023. Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications. Sens. Actuat. Rep. 5:100153. doi:10.1016/j.snr.2023.100153
  • Khilji, M. U. N., et al. 2023. Facile fabrication of a free-standing magnesium oxide-graphene oxide functionalized membrane: a robust and efficient material for the removal of pollutants from aqueous matrices. Anal. Lett. 0:1–18.
  • Hyder, A., A. Ali, A. Khalid, A. Nadeem, M. A. Khan, A. W. Memon, A. A. Memon, D. Janwery, M. Mehdi, A. Solangi, J. Yang, and K. H. Thebo. 2023. Supramolecular structural-based graphene oxide lamellar membrane for removing environmental pollutants from wastewater. Ind. Eng. Chem. Res. 62:21335–21346. doi:10.1021/acs.iecr.3c03260
  • Soomro, F., A. Ali, S. Ullah, M. Iqbal, T. Alshahrani, F. Khan, J. Yang, and K. H. Thebo. 2023. Highly efficient arginine intercalated graphene oxide composite membranes for water desalination. Langmuir 39:18447–18457. doi:10.1021/acs.langmuir.3c02699
  • Jatoi, K., A. H. Ali, A. Nadeem, A. Phulpoto, S. N. Iqbal, M. Memon, A. A. Yang, and J. Thebo. 2024. High-performance asparagine-modified graphene oxide membranes for organic dyes and heavy metal ion separation. New J. Chem. 48:1715–1723. doi:10.1039/D3NJ04552H
  • Ali, A., M. I. Vohra, A. Nadeem, B. S. Al-Anzi, M. Iqbal, A. A. Memon, A. H. Jatoi, J. Akhtar, J. Yang, and K. H. Thebo. 2024. Ultrafast graphene oxide-Lignin biopolymer nanocomposite membranes for separation of biomolecules, dyes, and salts. ACS Appl. Polym. Mater. 6:4747–4755. doi:10.1021/acsapm.4c00285
  • Buledi, M., J. A. Hyder, A. Ali, A. Solangi, A. R. Mallah, A. Amin, S. Memon, A. A. Thebo, and K. H. Kazi. 2024. Strategic decolorization of rose bengal in an aqueous environment using a zinc oxide-loaded reduced graphene oxide photocatalyst. J. Phys. Chem. Solids 192:112083. doi:10.1016/j.jpcs.2024.112083
  • Li, H., X. Chen, W. Lu, J. Wang, Y. Xu, and Y. Guo. 2021. Application of electrospinning in antibacterial field. Nanomaterials 11:1822. doi:10.3390/nano11071822
  • Hernández‐Orozco, M. M., R. Castellanos‐Espinoza, N. A. Hernández‐Santos, F. B. Ramírez‐Montiel, L. Álvarez‐Contreras, V. M. Arellano‐Arreola, F. Padilla‐Vaca, N. Arjona, and B. L. España‐Sánchez. 2023. Antibacterial and electrochemical evaluation of electrospun polyethersulfone/silver composites as highly persistent nanomaterials. Polym. Compos. 44:1711–1724. doi:10.1002/pc.27199
  • Baig, M. I., P. G. Ingole, J. Deok Jeon, S. U. Hong, W. K. Choi, and H. K. Lee. 2019. Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chem. Eng. J. 373:1190–1202. doi:10.1016/j.cej.2019.05.122
  • Diksha Yadav, P. G. I., M. Borpatra Gohain, M. Bora, S. Sen Sarma, S. Karki, and D. Kumar. 2024. Greener synthesis of thin-film nanocomposite membranes with varied nanofillers for enhanced organic micropollutant removal. Sep. Purif. Technol. 335:126125.
  • Yadav, D., S. Karki, M. Borpatra Gohain, and P. G. Ingole. 2023. Development of micropollutants removal process using thin-film nanocomposite membranes prepared by green new vapour-phase interfacial polymerization method. Chem. Eng. J. 472:144940.
  • Purushothaman, M., V. Arvind, K. Saikia, and V. K. Vaidyanathan. 2022. Fabrication of highly permeable and anti-fouling performance of poly(ether ether sulfone) nanofiltration membranes modified with zinc oxide nanoparticles. Chemosphere 286:131616. doi:10.1016/j.chemosphere.2021.131616
  • Shenvi, S., A. F. Ismail, and A. M. Isloor. 2014. Enhanced permeation performance of cellulose acetate ultrafiltration membranes by incorporation of sulfonated poly(1,4-phenylene ether ether sulfone) and poly(styrene-co-maleic anhydride. Ind. Eng. Chem. Res. 53:13820–13827. doi:10.1021/ie502310e
  • Kugarajah, V., M. Sugumar, E. Swaminathan, N. Balasubramani, and S. Dharmalingam. 2021. Investigation on sulphonated zinc oxide nanorod incorporated sulphonated poly(1,4-phenylene ether ether sulfone) nanocomposite membranes for improved performance of microbial fuel cell. Int. J. Hydrogen Energy 46:22134–22148. doi:10.1016/j.ijhydene.2021.04.067
  • Rahman, M. M., N. A. Alenazi, M. A. Hussein, M. M. Alam, K. A. Alamry, and A. M. Asiri. 2018. Nanocomposites-based nitrated polyethersulfone and doped ZnYNiO for selective As3+ sensor application. Adv. Polym. Technol. 37:3689–3700. doi:10.1002/adv.22153
  • Mobarakabad, P., A. R. Moghadassi, and S. M. Hosseini. 2015. Fabrication and characterization of poly(phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination. Desalination 365:227–233. doi:10.1016/j.desal.2015.03.002
  • Ansari, S., A. R. Moghadassi, and S. M. Hosseini. 2015. Fabrication of novel poly(phenylene ether ether sulfone) based nanocomposite membrane modified by Fe2NiO4 nanoparticles and ethanol as organic modifier. Desalination 357:189–196. doi:10.1016/j.desal.2014.11.022
  • Gončuková, Z., M. Řezanka, J. Dolina, and L. Dvořák. 2021. Sulfonated polyethersulfone membrane doped with ZnO-APTES nanoparticles with antimicrobial properties. React. Funct. Polym. 162:104872. doi:10.1016/j.reactfunctpolym.2021.104872
  • Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar. 2013. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A review. Prog. Polym. Sci. 38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003
  • Jo, Y. J., E. Y. Choi, N. W. Choi, and C. K. Kim. 2016. Antibacterial and hydrophilic characteristics of poly(ether sulfone) composite membranes containing zinc oxide nanoparticles grafted with hydrophilic polymers. Ind. Eng. Chem. Res. 55:7801–7809. doi:10.1021/acs.iecr.6b01510
  • Jo, Y. J., E. Y. Choi, S. W. Kim, and C. K. Kim. 2016. Fabrication and characterization of a novel polyethersulfone/aminated polyethersulfone ultrafiltration membrane assembled with zinc oxide nanoparticles. Polymer 87:290–299. doi:10.1016/j.polymer.2016.02.017
  • Grasset, F., N. Saito, D. Li, D. Park, I. Sakaguchi, N. Ohashi, H. Haneda, T. Roisnel, S. Mornet, and E. Duguet. 2003. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J. Alloys Compd. 360:298–311. doi:10.1016/S0925-8388(03)00371-2
  • Bouazizi, N., J. Vieillard, B. Samir, and F. Le Derf. 2022. Advances in Amine-Surface functionalization of inorganic adsorbents for water treatment and antimicrobial activities: a review. Polymers. 14:378. doi:10.3390/polym14030378
  • Li, D., Y. Luo, D. Onidas, L. He, M. Jin, F. Gazeau, J. Pinson, and C. Mangeney. 2021. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv. Colloid Interface Sci. 294:102479. doi:10.1016/j.cis.2021.102479
  • Shahriary, L., and A. A Athawale. 2014. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 02:58–63.
  • Rahman, M. M., M. A. Hussein, M. Abdel Salam, and A. M. Asiri. 2017. Fabrication of an l-glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis. New J. Chem. 41:10761–10772. doi:10.1039/C7NJ01704A
  • Ge, B., F. Wang, M. Sjölund-Karlsson, and P. F. McDermott. 2013. Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. J. Microbiol. Methods. 95:57–67. doi:10.1016/j.mimet.2013.06.021
  • Molecular Operating Environment (MOE) 2014.09, Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montréal, H3A 2R7, Canada. http://www.chemcomp.com.
  • Bayazeed, A., N. A. Alenazi, A. M. R. Alsaedi, M. H. Ibrahim, N. T. Al-Qurashi, and T. A. Farghaly. 2022. Formazan analogous: synthesis, antimicrobial activity, dihydrofolate reductase inhibitors and docking study. J. Mol. Struct. 1258:132653. doi:10.1016/j.molstruc.2022.132653
  • Li, Y. N., Y. C. Hao, H. Ye, Y. Z. Zhang, Y. Chen, and X. J. Xu. 2019. Single–sided superhydrophobic fluorinated silica/poly(ether sulfone) membrane for SO2 absorption. J. Membr. Sci. 580:190–201. doi:10.1016/j.memsci.2019.03.016
  • Haider, M. S., G. N. Shao, S. M. Imran, S. S. Park, N. Abbas, M. S. Tahir, M. Hussain, W. Bae, and H. T. Kim. 2016. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C Mater. Biol. Appl. 62:732–745. doi:10.1016/j.msec.2016.02.025
  • Turkani, V. S., D. Maddipatla, B. B. Narakathu, T. S. Saeed, S. O. Obare, B. J. Bazuin, and M. Z. Atashbar. 2019. A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Adv. 1:2311–2322. doi:10.1039/c9na00179d
  • Baghayeri, M., A. Amiri, F. Karimabadi, S. Di Masi, B. Maleki, F. Adibian, A. R. Pourali, and C. Malitesta. 2021. Magnetic MWCNTs-dendrimer: a potential modifier for electrochemical evaluation of as (III) ions in real water samples. J. Electroanal. Chem. 888:115059. doi:10.1016/j.jelechem.2021.115059
  • Hussein, M. A., M. M. Alam, H. K. Albeladi, R. M. El-Shishtawy, A. M. Asiri, and M. M. Rahman. 2019. Nanocomposite containing cross-linked poly(methyl-methacrylate)/multiwall carbon nanotube as a selective Y 3+ sensor probe. Polym. Compos. 40:E1673–E1684.
  • Mwafy, E. A., M. S. Gaafar, A. M. Mostafa, S. Y. Marzouk, and I. S. Mahmoud. 2021. Novel laser-assisted method for synthesis of SnO2/MWCNTs nanocomposite for water treatment from Cu (II). Diam. Relat. Mater. 113:108287. doi:10.1016/j.diamond.2021.108287
  • Hussein, M. A., H. K. Albeladi, A. S. Elsherbiny, R. M. El-Shishtawy, and A. N. Al-Romaizan. 2018. Cross-linked poly(methyl methacrylate)/multiwall carbon nanotube nanocomposites for environmental treatment. Adv. Polym. Technol. 37:3240–3251. doi:10.1002/adv.22093
  • Abdel-Fattah, E., A. I. Alharthi, and T. Fahmy. 2019. Spectroscopic, optical and thermal characterization of polyvinyl chloride-based plasma-functionalized MWCNTs composite thin films. Appl. Phys. A. 125:1–8. doi:10.1007/s00339-019-2770-y
  • Ghanei Agh Kaariz, D., E. Darabi, and S. M. Elahi. 2020. Fabrication of Au/ZnO/MWCNTs electrode and its characterization for electrochemical cholesterol biosensor. J. Theor. Appl. Phys. 14:339–348. doi:10.1007/s40094-020-00390-5
  • Wang, B., J. Li, Y. Liu, and Y. Gao. 2017. Reduced graphene oxide/carbon nanotubes nanohybrids as preformed reinforcement for polystyrene composites. J. Appl. Polym. Sci. 134:1–9.
  • Aragaw, B. A. 2020. Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction, J. Nanostruct. Chem. 10:9–18. doi:10.1007/s40097-019-00324-x
  • Belachew, N., D. S. Meshesha, and K. Basavaiah. 2019. Green syntheses of silver nanoparticle decorated reduced graphene oxide using l-methionine as a reducing and stabilizing agent for enhanced catalytic hydrogenation of 4-nitrophenol and antibacterial activity. RSC Adv. 9:39264–39271. doi:10.1039/c9ra08536j
  • Katowah, D. F., S. M. Saleh, S. A. Alqarni, R. Ali, G. I. Mohammed, and M. A. Hussein. 2021. Network structure ‑ based decorated CPA @ CuO hybrid nanocomposite for methyl orange environmental remediation. Sci. Rep. 11:5056. doi:10.1038/s41598-021-84540-y
  • Al-Gaashani, R., A. Najjar, Y. Zakaria, S. Mansour, and M. A. Atieh. 2019. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45:14439–14448. doi:10.1016/j.ceramint.2019.04.165
  • Gao, M., X. Long, J. Du, M. Teng, W. Zhang, Y. Wang, X. Wang, Z. Wang, P. Zhang, and J. Li. 2020. Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules. Food Funct. 11:448–455. doi:10.1039/c9fo00901a
  • Mallakpour, S., and S. Mansourzadeh. 2018. Sonochemical Synthesis of PVA/PVP Blend Nanocomposite Containing Modified CuO Nanoparticles with Vitamin B1 and Their Antibacterial Activity against Staphylococcus aureus and Escherichia coli. Ultrason. Sonochem. 43:91–100.
  • Ahmadizadegan, H., S. Esmaielzadeh, M. Ranjbar, Z. Marzban, and F. Ghavas. 2018. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity. Ultrason. Sonochem. 41:538–550. doi:10.1016/j.ultsonch.2017.10.020
  • Lu, J., S. Patel, N. Sharma, S. M. Soisson, R. Kishii, M. Takei, Y. Fukuda, K. J. Lumb, and S. B. Singh. 2014. Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem. Biol. 9:2023–2031. doi:10.1021/cb5001197
  • Saleh, M. A., M. A. El-Badry, and R. R. Ezz Eldin. 2021. Novel 6-hydroxyquinolinone derivatives: Design, synthesis, antimicrobial evaluation, in silico study and toxicity profiling. J. Comput. Chem. 42:1561–1578. doi:10.1002/jcc.26693
  • Kumar, R., D. Kumar, R. K. Upadhyay, N. Deswal, P. Takkar, A. Kareem, V. Kumar, and L. S. Kumar. 2022. Design, synthesis, antimicrobial screening and docking studies of newer 1,4-Dihydropyridine tethered chalcone hybrids. Chem. Select 7:e202202928. doi:10.1002/slct.202202928
  • Reece, R. J., A. Maxwell, and J. C. Wang. 1991. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26:335–375. doi:10.3109/10409239109114072
  • Amer, H. H., E. H. Eldrehmy, S. M. Abdel-Hafez, Y. S. Alghamdi, M. Y. Hassan, and S. H. Alotaibi. 2021. Antibacterial and molecular docking studies of newly synthesized nucleosides and schiff bases derived from sulfadimidines. Sci. Rep. 11:17953. doi:10.1038/s41598-021-97297-1
  • Chavez-Esquivel, G., H. Cervantes-Cuevas, L. F. Ybieta-Olvera, M. T. Castañeda Briones, D. Acosta, and J. Cabello. 2021. Antimicrobial activity of graphite oxide doped with silver against Bacillus subtilis, Candida albicans, Escherichia coli, and Staphylococcus aureus by agar well diffusion test: Synthesis and characterization. Mater. Sci. Eng. C 123:111934.
  • Azam, S. E., et al. 2023. Silver nanoparticles loaded active packaging of low-density polyethylene (LDPE), a challenge study against Listeria Monocytogenes, Bacillus Subtilis and Staphylococcus aurerus to enhance the shelf life of bread, meat and cheese. Int. J. Agric. Biosci. 12:165–171.
  • El-Batal, A. I., M. Abd Elkodous, G. S. El-Sayyad, N. E. Al-Hazmi, M. Gobara, and A. Baraka. 2020. Gum Arabic polymer-stabilized and gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. Int J Biol Macromol. 165:169–186.
  • Almehmadi, S. J., K. A. Alamry, M. A. Elfaky, A. M. Asiri, M. A. Hussien, S. Z. Al-Sheheri, and M. A. Hussein. 2021. The role of the arylidene linkage on the antimicrobial enhancement of new tert-butylcyclohexanone-based polyketones. Polym. Bull. 78:5427–5447. doi:10.1007/s00289-020-03365-3
  • Hussein, M. A., K. A. Alamry, S. J. Almehmadi, M. A. Elfaky, H. Džudžević-Čančar, A. M. Asiri, and M. A. Hussien. 2020. Novel biologically active polyurea derivatives and its TiO2-doped nanocomposites. Des. Monomers Polym. 23:59–74. doi:10.1080/15685551.2020.1767490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.