394
Views
4
CrossRef citations to date
0
Altmetric
The HKIE Outstanding Paper Award for Young Engineers/Researchers 2015

Stepwise anodic electrodeposition of nanoporous NiOOH/Ni(OH)2 with controllable wettability and its applications

&
Pages 202-211 | Received 21 Apr 2015, Accepted 21 Aug 2015, Published online: 31 Dec 2015

References

  • Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011;169:80–105. doi: 10.1016/j.cis.2011.08.005
  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotech. 2011;2:152–161. doi: 10.3762/bjnano.2.19
  • Ueda E, Levkin PA. Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater. 2013; 25:1234–1247. doi: 10.1002/adma.201204120
  • Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev. 2010;39:3240 –3255. doi: 10.1039/b917112f
  • Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci. 2011;56:1–108. doi: 10.1016/j.pmatsci.2010.04.003
  • Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. Acs Nano. 2010;4:7699–7707. doi: 10.1021/nn102557p
  • Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci. 2009;14:270–280. doi: 10.1016/j.cocis.2009.05.004
  • Kumar A, Abbott NL, Kim E, Biebuyck HA, Whitesides GM. Patterned self-assembled monolayers and mesoscale phenomena. Accounts Chem Res. 1995;28:219–226. doi: 10.1021/ar00053a003
  • Wang S, Feng L, Liu H, et al. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films. Chemphyschem. 2005;6:1475–1478. doi: 10.1002/cphc.200500204
  • Lifton VA, Simon S. Preparation and electrowetting transitions on superhydrophobic/hydrophilic bi-layer structures. J Porous Mat. 2011;18:535–544. doi: 10.1007/s10934-010-9406-0
  • Aria AI, Gharib M. Reversible tuning of the wettability of carbon nanotube arrays: the effect of ultraviolet/ozone and vacuum pyrolysis treatments. Langmuir. 2011;27:9005–9011. doi: 10.1021/la201841m
  • Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem. 2008;18:621–633. doi: 10.1039/B711226B
  • Kang SM, Hwang S, Jin SH, et al. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability. Langmuir. 2014;30:2828–2834. doi: 10.1021/la500266f
  • Geissler A, Chen L, Zhang K, Bonaccurso E, Biesalski M. Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chem Commun. 2013;49:4962–4964. doi: 10.1039/c3cc41568f
  • Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 Nanorod films. Angew Chem Int Ed. 2005;44:5115–5118. doi: 10.1002/anie.200501337
  • Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO Nanorod films. JACS. 2003;126:62–63. doi: 10.1021/ja038636o
  • Darmanin T, de Givenchy ET, Amigoni S, Guittard F. Superhydrophobic surfaces by electrochemical processes. Adv Mater. 2013;25:1378–1394. doi: 10.1002/adma.201204300
  • Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, Cao GZ. Optically transparent superhydrophobic silica-based films. Thin Solid Films. 2005;472:37–43. doi: 10.1016/j.tsf.2004.06.087
  • Jindasuwan S, Nimittrakoolchai O, Sujaridworakun P, Jinawath S, Supothina S. Surface characteristics of water-repellent polyelectrolyte multilayer films containing various silica contents. Thin Solid Films. 2009;517:5001–5005. doi: 10.1016/j.tsf.2009.03.116
  • Deng X, Mammen L, Zhao Y, et al. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from Porous Silica capsules. Adv Mater. 2011;23:2962–2965. doi: 10.1002/adma.201100410
  • Park KC, Choi HJ, Chang CH, et al. Nanotextured silica surfaces with Robust Superhydrophobicity and omnidirectional broadband supertransmissivity. Acs Nano. 2012;6:3789–3799. doi: 10.1021/nn301112t
  • Delorme N, Bardeau JF, Bulou A, Poncin-Epaillard F. Azobenzene-containing monolayer with photoswitchable wettability. Langmuir. 2005;21:12278–12282. doi: 10.1021/la051517x
  • Kidoaki S, Ohya S, Nakayama Y, Matsuda T. Thermoresponsive structural change of a poly(N-isopropylacryla mide) graft layer measured with an atomic force microscope. Langmuir. 2001;17:2402–2407. doi: 10.1021/la001522v
  • Julthongpiput D, Lin YH, Teng J, Zubarev ER, Tsukruk VV. Y-shaped polymer brushes: nanoscale switchable surfaces. Langmuir. 2003;19:7832–7836. doi: 10.1021/la035007j
  • Mecerreyes D, Alvaro V, Cantero I, et al. Low surface energy conducting polypyrrole doped with a fluorinated counterion. Adv Mater. 2002;14:749–752. doi: 10.1002/1521-4095(20020517)14:10<749::AID-ADMA749>3.0.CO;2-U
  • Tench D, Warren LF. Electrodeposition of conducting transition-metal oxide hydroxide films from aqueous-solution. J Electrochem Soc. 1983;130:869–872. doi: 10.1149/1.2119838
  • Chang YH, Hau NY, Liu C, et al. A short-range ordered-disordered transition of a NiOOH/Ni(OH)2 pair induces switchable wettability. Nanoscale. 2014;6:15309–15315. doi: 10.1039/C4NR05261G
  • Chang YH, Huang YT, Lo MK, et al. Electrochemical fabrication of transparent nickel hydroxide nanostructures with tunable superhydrophobicity/superhydrophilicity for 2D microchannels application. J Mater Chem A. 2014;2:1985–1990. doi: 10.1039/C3TA13882H
  • Bico J, Thiele U, Quéré D. Wetting of textured surfaces. Colloids and surfaces A. 2002;206:41–46. doi: 10.1016/S0927-7757(02)00061-4
  • Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388:431–432. doi: 10.1038/41233
  • Micale FJ, Topić M, Cronan CL, Leidheiser H Jr, Zettlemoyer AC. Surface properties of Ni(OH)2 and NiO. I. water adsorption and heat of immersion of Ni(OH)2. J Colloid Interface Sci. 1976;55:540–545. doi: 10.1016/0021-9797(76)90064-3
  • Radha AV, Kamath PV, Shivakumara C. Conservation of order, disorder, and “crystallinity” during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. J Phys Chem B. 2007;111:3411–3418. doi: 10.1021/jp0684170
  • Yang S, Ju J, Qiu Y, et al. Peanut leaf inspired multifunctional surfaces. Small. 2014;10:294–299. doi: 10.1002/smll.201301029
  • Payne BP, Biesinger MC, McIntyre NS. Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. J Electron Spectrosc Relat Phenom. 2012;185:159–166. doi: 10.1016/j.elspec.2012.06.008
  • Kung CW, Chen HW, Lin CY, Vittal R, Ho KC. Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors. J Power Sources. 2012;214:91–99. doi: 10.1016/j.jpowsour.2012.04.076
  • Żenkiewicz M. Methods for the calculation of surface free energy of solids. JAMME. 2007;24:137–145.
  • Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–1554. doi: 10.1021/cr9502357
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Sc. 1944;40:546–551. doi: 10.1039/tf9444000546
  • Chattopadhyay S, Huang YF, Jen YJ, et al. Anti-reflecting and photonic nanostructures. Mater Sci Eng, R. 2010;69:1–35. doi: 10.1016/j.mser.2010.04.001
  • Lam P, Wynne KJ, Wnek GE. Surface-tension-confined microfluidics. Langmuir. 2002;18:948–951. doi: 10.1021/la010589v
  • You I, Yun N, Lee H. Surface-tension-confined microfluidics and their applications. Chemphyschem. 2013;14:471–481. doi: 10.1002/cphc.201200929
  • Scheck C, Evans Paul, Schad R, et al. Selective metal electrodeposition through doping modulation of semiconductor surfaces. Appl Phys Lett. 2005;86:133108–133110. doi: 10.1063/1.1896086
  • Feng HP, Paudel T, Yu B, et al. Nanoparticle-enabled selective electrodeposition. Adv Mater. 2011;23:2454–2459. doi: 10.1002/adma.201004656
  • Pesika NS, Fan F, Searson PC, Stebe KJ. Site-selective patterning using surfactant-based resists. JACS. 2005;127:11960–11962. doi: 10.1021/ja050955n
  • Budevski E, Staikov G, Lorenz WJ. Electrocrystallization: nucleation and growth phenomena. Electrochim Acta. 2000;45:2559–2574. doi: 10.1016/S0013-4686(00)00353-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.