89
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

High-selectivity balanced-filter circuits based on coupled lines with open/shorted loaded stubs

&
Pages 2-11 | Received 16 Aug 2015, Accepted 26 Oct 2015, Published online: 17 Mar 2016

References

  • Eisenstant WR, Stengel B, Thompson BM. Microwave differential circuit design using mixed-mode S-parameters. Boston, MA, the USA: Artech House; 2006.
  • Yang N, Caloz C, Wu K. Greater than the sum of its parts. IEEE Microw Mag. 2010 Jun;11(4):69–85. doi: 10.1109/MMM.2010.936495
  • Wu CH, Wang CH, Chen CH. Novel balanced coupled-line bandpass filters with common-mode noise suppression. IEEE Trans Microw Theory Techn. 2007 Feb;55(2):287–295. doi: 10.1109/TMTT.2006.889147
  • Wu CH, Wang CH, Chen CH. Balanced coupled-resonator bandpass filters using multi-section resonators for common-mode suppression and stopband extension. IEEE Trans Microw Theory Techn. 2007 Aug;55(8):1756–1763. doi: 10.1109/TMTT.2007.901609
  • Shi J, Xue Q. Balanced bandpass filters using center-loaded half-wavelength resonators. IEEE Trans Microw Theory Techn. 2010 Apr;58(4):970–977. doi: 10.1109/TMTT.2010.2042839
  • Shi J, Xue Q. Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode suppression. IEEE Trans Microw Theory Techn. 2010 Aug;58(8):2204–2212. doi: 10.1109/TMTT.2010.2052959
  • Saitou A, Ahn KP, Aoki H, Honjo K, Watanabe K. Differential mode bandpass filters with four coupled lines embedded in self complementary antennas. IEICE Trans Electron. 2007 Jul;E90-C(7):1524–1532. doi: 10.1093/ietele/e90-c.7.1524
  • Naqui J, Fernández-Prieto A, Durán-Sindreu M, Mesa F, Martel J, Medina F, Martín F. Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications. IEEE Trans Microw Theory Techn. 2010 Aug;60(10):3023–3034. doi: 10.1109/TMTT.2012.2209675
  • Lim TB, Zhu L. A differential-mode wideband bandpass filter on microstrip line for UWB application. IEEE Microw Wireless Compon Lett. 2009 Oct;19(10):632–634. doi: 10.1109/LMWC.2009.2029739
  • Abbosh AM. Ultrawideband balanced bandpass filter. IEEE Microw Wireless Compon Lett. 2011 Sep;21(9):480–482. doi: 10.1109/LMWC.2011.2162620
  • Shi J, Shao C, Chen JX, Lu QY, Peng YJ, Bao ZH. Compact low-loss wideband differential bandpass filter with high common-mode suppression. IEEE Microw Wireless Compon Lett. 2013 Sep;23(9):480–482. doi: 10.1109/LMWC.2013.2274996
  • Wang XH, Xue Q, Choi WW. A novel ultra-wideband differential filter based on double-sided parallel-strip line. IEEE Microw Wireless Compon Lett. 2010 Aug;20(8):471–473. doi: 10.1109/LMWC.2010.2050869
  • Feng WJ, Che WQ, Eibert TF, Xue Q. Compact wideband differential bandpass filter based on the double-sided parallel-strip line and transversal signal-interaction concepts. IET Microw Antennas Propag. 2012 Apr;6(2):186–195. doi: 10.1049/iet-map.2011.0400
  • Feng WJ, Che WQ, Ma YL, Xue Q. Compact wideband differential bandpass filter using half-wavelength ring resonator, IEEE Microw Wireless Compon Lett. 2013 Feb;23(2):81–83. doi: 10.1109/LMWC.2013.2239632
  • Feng WJ, Che WQ. Novel wideband differential bandpass filters based on T-shaped structure. IEEE Trans Microw Theory Techn. 2012 Jun;60(6):1560–1568. doi: 10.1109/TMTT.2012.2188538
  • Wu CH, Wang CH, Chen CH. A novel balanced-to-unbalanced diplexer based on four-port balanced-to-balanced bandpass filter. Proceedings of 38th European Microwave Conference; 2008 Oct 27–31; Amsterdam.
  • Xue Q, Shi J, Chen JX. Unbalanced-to-balanced and balanced-to-unbalanced diplexer with high selectivity and common-mode suppression. IEEE Trans Microw Theory Techn. 2011 Nov;59(11):2848–2855. doi: 10.1109/TMTT.2011.2165960
  • Xia B, Wu LS, Mao JF. A new balanced-to-balanced power divider/combiner. IEEE Trans Microw Theory Techn. 2012 Sep;60(9):287–295. doi: 10.1109/TMTT.2012.2203926
  • Wu LS, Xia B, Mao JF. A half-mode substrate integrated waveguide ring for two-way power division of balanced circuit. IEEE Microw Wireless Compon Lett. 2012 Jul;22(7):333–335. doi: 10.1109/LMWC.2012.2203116
  • Feng WJ, Zhu HT, Che WQ, Xue Q. Wideband in-phase and out-of-phase balanced power divider and combiner networks. IEEE Trans Microw Theory Techn. 2014 May;62(5):1192–1202. doi: 10.1109/TMTT.2014.2314441
  • Zhu L, Menzel W. Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator. IEEE Microw Wireless Compon Lett. 2003 Jan;13(1):16–18. doi: 10.1109/LMWC.2002.807705
  • Tu WH. Broadband microstrip bandpass filters using triple-mode resonator. IET Microw Antennas Propag. 2010;4(9):1275–1282. doi: 10.1049/iet-map.2009.0106
  • Chiou YC, Kuo JT, Cheng E. Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs). IEEE Trans Microw Theory Techn. 2006 Aug;54(8):3352–3358. doi: 10.1109/TMTT.2006.879131
  • Feng WJ, Che WQ, Chang YM, Shi SY, Xue Q. High selectivity fifth-order wideband bandpass filter with multiple transmission zeros based on transversal signal-interaction concepts. IEEE Trans Microw Theory Techn. 2013 Jan;61(1):89–97. doi: 10.1109/TMTT.2012.2227785
  • Song KJ, Xue Q. Inductance-loaded Y-shaped resonators and their applications to filters. IEEE Trans Microw Theory Techn. 2010 Apr;58(4):978–984. doi: 10.1109/TMTT.2010.2042509
  • Abbosh AM. Planar bandpass filters for ultra-wideband applications. IEEE Trans Microw Theory Techn. 2007 Oct;55(10):2262–2269. doi: 10.1109/TMTT.2007.906468
  • Feng WJ, Che WQ, Shi SY, Xue Q. High selectivity wideband bandpass filter based on transversal signal-interaction concepts and T-shaped structure. IEEE Microw Wireless Compon Lett. 2012 Nov;22(11):562–564. doi: 10.1109/LMWC.2012.2224651
  • Tang CW, Chen MG. Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines. IEEE Microw Wireless Compon Lett. 2006 Dec;16(12):666–668. doi: 10.1109/LMWC.2006.885620
  • Sun S, Zhu L. Asymmetrically-loaded interdigital coupled line for wideband microstrip bandpass filters with good out-of-band performance. IET Electron Lett. 2008 Apr;44(8):530–531. doi: 10.1049/el:20080206
  • Tang CW, Tseng CT, Chang SC. A tunable bandpass filter with modified parallel-coupled line. IEEE Microw Wireless Compon Lett. 2013 Apr;23(4):190–192. doi: 10.1109/LMWC.2013.2247585
  • Szydlowski L, Leszczynska N, Mrozowski M. Generalized Chebyshev bandpass filters with frequency-dependent couplings based on stubs. IEEE Trans Microw Theory Techn. 2013 Oct;61(10):3601–3612. doi: 10.1109/TMTT.2013.2279777
  • Gruszczynski S, Wincza K. Broadband rat-race couplers with coupled-line section and impedance transformers. IEEE Microw Wireless Compon Lett. 2012 Jan;22(1):22–24. doi: 10.1109/LMWC.2011.2177649
  • Omote Y, Yasuzumi T, Uwano T, Hashimoto O. Design procedure of wideband bandpass filter consists of interdigital finger resonator and parallel coupled lines. Proceedings of Asia-Pacific Microwave Conference; 2010 Dec 7–10; Yokohama.
  • Matthaei G, Young L, Jones EMT. Microwave filters, impedance matching networks and coupling structures. Norwood, MA: Artech House Inc; 1985, Section 5, p. 222–224.
  • Sánchez-Martínez JJ, Márquez-Segura E, Lucyszyn S. Design of compact wideband bandpass filters based on multiconductor transmission lines with interconnected alternated lines. IEEE Microw Wireless Compon Lett. 2014 Jul;24(7):454–456. doi: 10.1109/LMWC.2014.2316498
  • Feng WJ, Che WQ. Transversal wideband bandpass filter using open/shorted coupled lines. IET Electron Lett. 2013 Sep;49(19):1235–1237. doi: 10.1049/el.2013.2336

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.