128
Views
2
CrossRef citations to date
0
Altmetric
The HKIE Outstanding Paper Award for Young Engineers/Researchers 2016

Bacterial community structure evolution under prolonged BTEX and styrene exposure: a metagenomic study

, &
Pages 189-199 | Received 15 Mar 2016, Accepted 14 Jul 2016, Published online: 16 Dec 2016

References

  • Abbai NS, Pillay B. Analysis of hydrocarbon- contaminated groundwater metagenomes as revealed by high-throughput sequencing. Mol Biotechnol. 2013;54(3):900–912. doi: 10.1007/s12033-012-9639-z
  • Dao L, Grigoryeva T, Laikov A, et al. Full-scale bioreactor pretreatment of highly toxic wastewater from styrene and propylene oxide production. Ecotoxicol Environ Saf. 2014;108:195–202. doi: 10.1016/j.ecoenv.2014.07.012
  • Alfreider A, Vogt C. Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Poll. 2007;183(1–4):415–426. doi: 10.1007/s11270-007-9390-4
  • Bombach P, Chatzinotas A, Neu TR, et al. Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol Ecol. 2010;71(2):237–246. doi: 10.1111/j.1574-6941.2009.00809.x
  • Greene EA, Kay JG, Jaber K, et al. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl Environ Microbiol. 2000;66(12):5282–5289. doi: 10.1128/AEM.66.12.5282-5289.2000
  • Fahy A, McGenity TJ. Remediation of BTEX in groundwater underlying petrochemical plants. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; 2010. p. 2609–2615.
  • Hendrickx B, Dejonghe W, Boënne W, et al. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol. 2005;71(7):3815–3825. doi: 10.1128/AEM.71.7.3815-3825.2005
  • Lee EH, Kim J, Kim JY, et al. Comparison of microbial communities in petroleum-contaminated groundwater using genetic and metabolic profiles at Kyonggi-Do, South Korea. Environ Earth Sci. 2010;60(2):371–382. doi: 10.1007/s12665-009-0181-7
  • Táncsics A, Szoboszlay S, Szabó I, et al. Quantification of subfamily I. 2. C catechol 2, 3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Environ Sci Technol. 2011;46(1):232–240. doi: 10.1021/es201842h
  • World Health Organization (WHO). Guidelines for drinking-water quality. 4th ed. Geneva: WHO Press, World Health Organization; 2011.
  • Farhadian M, Duchez D, Vachelard C, et al. Monoaromatics removal from polluted water through bioreactors - a review. Water Res. 2008;42(6–7):1325–1341. doi: 10.1016/j.watres.2007.10.021
  • Fallah N, Bonakdarpour B, Nasernejad B, et al. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). J Hazard Mater. 2010;178(1–3):718–724. doi: 10.1016/j.jhazmat.2010.02.001
  • Ahmad M, Bajahlan A. Leaching of styrene and other aromatic compounds in drinking water from PS bottles. J Environ Sci. 2007;19(4):421–426. doi: 10.1016/S1001-0742(07)60070-9
  • Cushman JR, Rausina GA, Cruzan G, et al. Ecotoxicity hazard assessment of styrene. Ecotoxicol Environ Saf. 1997;37(2):173–180. doi: 10.1006/eesa.1997.1540
  • Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9(11):803–816. doi: 10.1038/nrmicro2652
  • Da Silva ML, Alvarez PJ. Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol. 2004;70(8):4720–4726. doi: 10.1128/AEM.70.8.4720-4726.2004
  • Morlett-Chávez JA, Ascacio-Martínez JÁ, Rivas-Estilla AM, et al. Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Int Biodeterior Biodegrad. 2010;64(7):581–587. doi: 10.1016/j.ibiod.2010.06.010
  • Fahy A, McGenity TJ, Timmis KN, et al. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol. 2006;58(2):260–270. doi: 10.1111/j.1574-6941.2006.00162.x
  • Hendrickx B, Junca H, Vosahlova J, et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Meth. 2006;64(2):250–265. doi: 10.1016/j.mimet.2005.04.018
  • Ji SC, Kim D, Yoon JH, et al. Metagenomic analysis of BTEX-contaminated forest soil microcosm. J Microbiol Biotechnol. 2007;17(4):668–672.
  • Li L, Goel R. Biodegradation of naphthalene, benzene, toluene, ethyl benzene, and xylene in batch and membrane bioreactors. Environ Eng Sci. 2012;29(1):42–51. doi: 10.1089/ees.2010.0362
  • Arnold M, Reittu A, von Wright A, et al. Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol. 1997;48(6):738–744. doi: 10.1007/s002530051126
  • Alexandrino M, Knief C, Lipski A. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters. Appl Environ Microbiol. 2001;67(10):4796–4804. doi: 10.1128/AEM.67.10.4796-4804.2001
  • Portune KJ, Pérez MC, Álvarez-Hornos FJ, et al. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing. Appl Microbiol Biotechnol. 2015;99(1):3–18. doi: 10.1007/s00253-014-5868-3
  • Lima-Morales D, Jáuregui R, Camarinha-Silva A, et al. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long term pollutant stress. Appl Environ Microbiol. 2016;82(7):2227–2237. doi: 10.1128/AEM.03482-15
  • Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997;63(11):4516–4522.
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi: 10.1128/AEM.01541-09
  • Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi: 10.1128/AEM.01043-13
  • Schloss PD. A high-throughput DNA sequence aligner for microbial ecology studies. PloS One. 2009;4(12):e8230. doi: 10.1371/journal.pone.0008230
  • Huse SM, Welch DM, Morrison HG, et al. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol. 2010;12(7):1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–2200. doi: 10.1093/bioinformatics/btr381
  • Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07
  • Fahy A, Lethbridge G, Earle R, et al. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol. 2005;7(8):1192–1199. doi: 10.1111/j.1462-2920.2005.00799.x
  • Pérez-Pantoja D, Donoso R, Junca H, et al. Phylogenomics of aerobic bacterial degradation of aromatics. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; 2010. p. 1355–1397.
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27
  • Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(D1):D199–D205. doi: 10.1093/nar/gkt1076
  • Pérez-Pantoja D, Donoso R, Agulló L, et al. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol. 2012;14(5):1091–1117. doi: 10.1111/j.1462-2920.2011.02613.x
  • Pruden A, Suidan M. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1. Biodegradation. 2004;15(4):213–227. doi: 10.1023/B:BIOD.0000042900.29237.f1
  • Nikodinovic J, Kenny ST, Babu RP, et al. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol. 2008;80(4):665–673. doi: 10.1007/s00253-008-1593-0
  • Jung IG, Park CH. Characteristics of styrene degradation by Rhodococcus pyridinovorans isolated from a biofilter. Chemosphere. 2005;61(4):451–456. doi: 10.1016/j.chemosphere.2005.03.007
  • Warhurst AM, Clarke KF, Hill RA, et al. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol. 1994;60(4):1137–1145.
  • Hori K, Kobayashi A, Ikeda H, et al. Rhodococcus aetherivorans IAR1, a new bacterial strain synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from toluene. J Biosci Bioeng. 2009;107(2):145–150. doi: 10.1016/j.jbiosc.2008.10.005
  • Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res. 2014;21(12):7369–7389. doi: 10.1007/s11356-014-2640-2
  • Nikodinovic-Runic J, Casey E, Duane GF, et al. Process analysis of the conversion of styrene to biomass and medium chain length polyhydroxyalkanoate in a two-phase bioreactor. Biotechnol Bioeng. 2011;108(10):2447–2455. doi: 10.1002/bit.23187
  • Pérez-Pantoja D, González B, Pieper D. Aerobic degradation of aromatic hydrocarbons. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; 2010. p. 799–837.
  • Tischler D, Kaschabek SR. Microbial styrene degradation: from basics to biotechnology. In: Singh SN, editor. Microbial degradation of Xenobiotics. Environmental science and engineering. Berlin: Springer; 2012. p. 67–99.
  • Ntougias S, Lapidus A, Lapidus A, et al. High quality draft genome sequence of Olivibacter sitiensis type strain (AW-6T), a diphenol degrader with genes involved in the catechol pathway. Stand Genomic Sci. 2014;9(3):783–793. doi: 10.4056/sigs.5088950
  • Jayamani I, Manzella MP, Cupples AM. RDX degradation potential in soils previously unexposed to RDX and the identification of RDX-degrading species in one agricultural soil using stable isotope probing. Water, Air, Soil Pollut. 2013;224(10):1–15. doi: 10.1007/s11270-013-1745-4
  • Silva CC, Hayden H, Sawbridge T, et al. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express. 2012;2(1):1–13. doi: 10.1186/2191-0855-2-18
  • Guo M, Zhou Q, Zhou Y, et al. Genomic evolution of 11 type strains within family planctomycetaceae. PloS One. 2014;9(1):e86752. doi: 10.1371/journal.pone.0086752

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.