148
Views
0
CrossRef citations to date
0
Altmetric
The HKIE Outstanding Paper Award for Young Engineers/Researchers 2016

3D-printed millifluidic chip for synthesising plasmonic semiconductor nanocrystals as sensors substrate

, &
Pages 174-178 | Received 16 Mar 2016, Accepted 14 Jul 2016, Published online: 16 Dec 2016

References

  • Dennany L, Gerlach M, O’Carroll S, et al. Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. J Mater Chem. 2011;21:13984. doi: 10.1039/c1jm12183a
  • Manteca A, Mujika M, Arana S. GMR sensors: Magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles. Biosens Bioelectron. 2011;26:3705–3709. doi: 10.1016/j.bios.2011.02.013
  • Liu C, Wang S, Chen G, et al. A surface-enhanced Raman scattering (SERS)-active optical fiber sensor based on a three-dimensional sensing layer. Sensing and Bio-Sensing Research. 2014;1:8–14. doi: 10.1016/j.sbsr.2014.06.004
  • Li JJ, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res. 2000;28:52e. doi: 10.1093/nar/28.11.e52
  • Law WC, Markowicz P, Yong KT, et al. Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron. 2007;23:627–632. doi: 10.1016/j.bios.2007.07.015
  • Law WC, Yong KT, Baev A, et al. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano. 2011;5:4858–4864. doi: 10.1021/nn2009485
  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mat. 2009;21:4880–4910. doi: 10.1002/adma.200802789
  • Jakab A, Rosman C, Khalavka Y, et al. Highly sensitive plasmonic silver nanorods. ACS Nano. 2011;5:6880–6885. doi: 10.1021/nn200877b
  • Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem of Mater. 2013;25:1250–1261. doi: 10.1021/cm303708p
  • Loo C, Hirsch L, Lee MH, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett. 2005;30:1012. doi: 10.1364/OL.30.001012
  • Ma W, Sun M, Xu L, et al. A SERS active gold nanostar dimer for mercury ion detection. Chem Commun. 2013;49:4989. doi: 10.1039/c3cc39087j
  • Yavuz MS, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater. 2009;8:935–939. doi: 10.1038/nmat2564
  • Law WC, Yong KT, Baev A, et al. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express. 2009;17:19041. doi: 10.1364/OE.17.019041
  • Zhao Y, Pan H, Lou Y, et al. Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc. 2009;131:4253–4261. doi: 10.1021/ja805655b
  • Luther JM, Jain PK, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater. 2011;10:361–366. doi: 10.1038/nmat3004
  • Liu X, Wang X, Zhou B, et al. Size-controlled synthesis of Cu2−xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv Funct Mater. 2013;23:1256–1264. doi: 10.1002/adfm.201202061
  • Dorfs D, Hartling T, Miszta K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2–xSe nanocrystals. J Am Chem Soc. 2011;133:11175–11180. doi: 10.1021/ja2016284
  • Ku G, Zhou M, Song S, et al. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano. 2012;6:7489–7496. doi: 10.1021/nn302782y
  • Hessel CM, Pattani VP, Rasch M, et al. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett. 2011;11:2560–2566. doi: 10.1021/nl201400z
  • Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett. 2002;366:17–23. doi: 10.1016/S0009-2614(02)01492-6
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci United States of America. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100
  • Cheung TL, Hong L, Rao N, et al. Nanoscale. 2016;8:6609–6622. doi: 10.1039/C5NR09144F
  • Guo MR, Law WC, Liu X, et al. Plasmonic semiconductor nanocrystals as chemical sensors: Pb2+ quantitation via aggregation-induced plasmon resonance shift. Plasmonics. 2014;9:893–898. doi: 10.1007/s11468-014-9694-3
  • Wu SY, Ho HP, Law WC, et al. Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration. Opt Lett. 2004;29:2378. doi: 10.1364/OL.29.002378
  • Alam R, Labine M, Karwacki CJ, et al. Modulation of Cu2−xS nanocrystal plasmon resonance through reversible photoinduced electron transfer. ACS Nano. 2016;10:2880–2886. doi: 10.1021/acsnano.5b08066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.