268
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Improving the frosting and defrosting performance of air source heat pump units: review and outlook

, , , &
Pages 88-98 | Received 01 Nov 2016, Accepted 26 Mar 2017, Published online: 17 Jul 2017

References

  • Nishimura T. “Heat pumps-status and trends” in Asia and the Pacific. Int J Refrig. 2002;25(4):405–413. doi: 10.1016/S0140-7007(01)00031-7
  • Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renew Sust Energ Rev. 2012;16:1340–1358. doi: 10.1016/j.rser.2011.10.015
  • Wang ZH, Wang FH, Ma ZJ, et al. Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant. Appl Ther Eng. 2017;112:248–258. doi: 10.1016/j.applthermaleng.2016.10.040
  • Yao Y, Ma ZL. Modelling and analyzing of airside heat exchanger under frosting in air source heat pump water chiller/heater. International Journal of Harbin Institute of Technology. 2003;35:781–783.
  • Wang SW, Liu ZY. A new method for preventing HP from frosting. Renew Energy. 2005;30:753–761. doi: 10.1016/j.renene.2003.07.001
  • Kwak K, Bai C. A study on the performance enhancement of heat pump using electric heater under the frosting condition: heat pump under frosting condition. Appl Ther Eng. 2010;30:539–543. doi: 10.1016/j.applthermaleng.2009.10.016
  • Liu D, Zhao FY, Tang GF. Frosting of heat pump with heat recovery facility. Renew Energ (in Chinese). 2007;32(6):1228–1242. doi: 10.1016/j.renene.2006.03.019
  • Huang H, Shu PC, Li ZH. Experimental study of operating characteristics under frosting in air source heat pump water chiller/heater. Fluid Machinery. 1998;12:43–47.
  • Ye HY, Lee KS. Performance prediction of a fin-and-tube heat exchanger considering air-flow reduction due to the frost accumulation. Int J Heat Mass Tran. 2013;67:225–233. doi: 10.1016/j.ijheatmasstransfer.2013.08.026
  • Yan QL, Zhu L, Zhang ME, et al. Study on ultrasonic defrost technology of refrigeration fan. Trans Chinese Soc Agr Mach. 2003;34:74–85.
  • Wang D, Tao T, Xu G, et al. Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration. Exp Therm Fluid Sci. 2012;36:1–11.
  • Aihara T, Ohara T, Toshiyuki S, et al. Heat-transfer and defrosting characteristics of a horizontal array of cooled tubes immersed in a very shallow fluidized bed. Int J Heat Mass Tran. 1997;40:1807–1815. doi: 10.1016/S0017-9310(96)00258-X
  • Young DJ. Development of a northern climate residential air-source heat pump. ASHRAE Trans. 1980;86:671–686.
  • Watters RJ, O’Neal DL, Yang JX. Frost/defrost performance of a three-row fin staged heat pump evaporator. ASHRAE Trans. 2002;108:318–329.
  • Sommers AD, Jacobi AM. Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation. Int J Refrig. 2005;28:1006–1017. doi: 10.1016/j.ijrefrig.2005.04.003
  • Lee M, Kim Y, Lee H, et al. Air-side heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitches under frosting conditions. Int J Heat Mass Tran. 2010;53:2655–2661. doi: 10.1016/j.ijheatmasstransfer.2010.02.047
  • Kondepudi SN, O’Neal DL. The effects of different fin configuration on the performance of finned-tube heat exchanger under frosting conditions. ASHRAE Trans. 1990;96:439–444.
  • Zhang P, Hrnjak PS. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions. Int J Refrig. 2009;32:911–921. doi: 10.1016/j.ijrefrig.2008.11.006
  • Kuwahara E, Kuwahara T, Yamazaki M. Shortening the defrost time on a heat-pump air conditioner. ASHRAE Trans. 1986;92:20–29.
  • Umezu K, Suma S. Heat pump room air-conditioner using variable capacity compressor. ASHRAE Trans. 1984;90:335–349.
  • Winandy EL, Lebrun J. Scroll compressors using gas and liquid injection: experimental analysis and modelling. Int J Refrig. 2002;25:1143–1156. doi: 10.1016/S0140-7007(02)00003-8
  • Ding YJ, Chai QH, Ma GY, et al. Experimental study of an improved air source heat pump. Energ Convers Manage. 2004;45:2393–2403. doi: 10.1016/j.enconman.2003.11.021
  • Bertsch SS, Groll EA. Two-stage air-source heat pump for residential heating and cooling applications in northern U.S. climates. Int J Refrig. 2008;31:1282–1292. doi: 10.1016/j.ijrefrig.2008.01.006
  • Song MJ, Chen AL, Mao N. An experimental study on defrosting performance of an air source heat pump unit with a multi-circuit outdoor coil at different frosting evenness values. Appl Ther Eng. 2016;94:331–340. doi: 10.1016/j.applthermaleng.2015.10.082
  • Song MJ, Xia L, Mao N, et al. An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil. Appl Energy. 2016;164:36–44. doi: 10.1016/j.apenergy.2015.11.036
  • Bansal P, Fothergill D, Fernandes R. Thermal analysis of the defrost cycle in a domestic freezer. Int J Refrig. 2010;33:589–599. doi: 10.1016/j.ijrefrig.2009.11.012
  • Ameen FR, Coney JER, Sheppard CGW. Experimental study of warm-air defrosting of heat-pump evaporators. Int J Refrig. 1993;16:13–18. doi: 10.1016/0140-7007(93)90015-Z
  • Melo C, Knabben FT, Pereira PV. An experimental study on defrost heaters applied to frost-free household refrigerators. Appl Ther Eng. 2013;51:239–245. doi: 10.1016/j.applthermaleng.2012.08.044
  • Abdel-Wahed RM, Hifni MA, Sherif SA. Hot water defrosting of a horizontal flat plate cooling surface. Int J Refrig. 1983;6:152–154. doi: 10.1016/0140-7007(83)90095-6
  • Kim J, Choi HJ, Kim KC. A combined dual Hot-Gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region. Appl Energy. 2015;147:344–352. doi: 10.1016/j.apenergy.2015.02.074
  • Song MJ, Mao N, Deng SM, et al. An experimental study on defrosting performance for an air source heat pump unit at different frosting evenness values with melted frost local drainage. Appl Ther Eng. 2016;99:730–740. doi: 10.1016/j.applthermaleng.2015.12.100
  • Kondepudi SN, O’Neal DL. Frosting performance of tube fin heat exchangers with wavy and corrugated fins. Exp Therm Fluid Sci. 1991;4:613–618. doi: 10.1016/0894-1777(91)90040-X
  • O’Neal DL, Peterson KT, Anand NK, et al. Refrigeration system dynamics during the reverse cycle defrost. ASHRAE Trans. 1989;95:689–698.
  • Mao N, Song MJ, Deng SM. Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort. Appl Energy. 2016;180:536–545. doi: 10.1016/j.apenergy.2016.08.011
  • Mao N, Song MJ, Deng SM, et al. Experimental and numerical study on air flow and moisture transport in sleeping environments with a task/ambient air conditioning (TAC) system. Energ Buildings. 2016;133:596–604. doi: 10.1016/j.enbuild.2016.10.008
  • Mao N, Song MJ, Pan DM, et al. Computational fluid dynamics analysis of convective heat transfer coefficients for a sleeping human body. Appl Ther Eng. 2017;117:385–396. doi: 10.1016/j.applthermaleng.2017.02.012
  • Hu WJ, Jiang YQ, Qu ML, et al. An experimental study on the operating performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps. Appl Ther Eng. 2011;31:363–369. doi: 10.1016/j.applthermaleng.2011.07.032
  • Wang ZH, Wang FH, Wang XK, et al. Dynamic character investigation and optimization of a novel air-source heat pump system. Appl Ther Eng. 2017;111:122–133. doi: 10.1016/j.applthermaleng.2016.09.076
  • Song MJ, Deng SM, Pan DM, et al. An experimental study on the effects of downwards flowing of melted frost over a vertical multi-circuit outdoor coil in an air source heat pump on defrosting performance during reverse cycle defrosting. Appl Ther Eng. 2014;67:258–265. doi: 10.1016/j.applthermaleng.2014.03.020
  • Song MJ, Pan DM, Li N, et al. An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting. Appl Energy. 2015;138:598–604. doi: 10.1016/j.apenergy.2014.09.010
  • Song MJ, Deng SM, Mao N, et al. An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil. Appl Energy. 2016;165:371–382. doi: 10.1016/j.apenergy.2015.12.107
  • Aganda AA, Coney JER, Farrant PE, et al. A comparison of the predicted and experimental heat transfer performance of a finned tube evaporator. Appl Ther Eng. 2000;20:499–513. doi: 10.1016/S1359-4311(99)00037-X
  • Aganda AA, Coney JER, Sheppard CGW. Airflow maldistribution and the performance of a packaged air conditioning unit evaporator. Appl Ther Eng. 2000;20:515–528. doi: 10.1016/S1359-4311(99)00038-1
  • Kim JH, Braun JE, Groll EA. A hybrid method for refrigerant flow balancing in multi-circuit evaporators: upstream versus downstream flow control. Int J Refrig. 2009;32:1271–1282. doi: 10.1016/j.ijrefrig.2009.01.013
  • Song MJ, Wang ZH, Mao N, et al. An experimental study on the uneven refrigerant distribution over a vertically installed multi-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting. Appl Ther Eng. 2015;91:975–985. doi: 10.1016/j.applthermaleng.2015.09.006
  • Goodman TR, Shea JJ. The melting of finite slabs. J Appl Mech. 1960;27:16–24. doi: 10.1115/1.3643893
  • Sherif SA, Sherif RA. Hot gas defrosting analysis of a flat plate cooler. Proceedings of the 15th World Energy Engineering Congress and the 1992 World Environmental Engineering Congress; Atlanta. Georgia; 1992. p. 583–586.
  • Al-Mutawa NK, Sherif SA. An analytical model for hot-gas defrosting of a cylindrical coil cooler, part I: model development. ASHRAE Trans. 1998;104:1722–1730.
  • Alebrahim A, Sherif SA. Electric defrosting analysis of a finned-tube evaporator coil using the enthalpy method. Proce Inst Mech Eng J Mech Eng Sci. 2002;216:655–673. doi: 10.1243/095440602320192300
  • Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, part 1: heat and mass transfer theory. ASHRAE Trans. 1992;98:451–461.
  • Krakow KI, Yan L, Lin S. A model of hot gas defrosting of evaporators, part 2: experimental analysis. ASHRAE Trans. 1992;98:462–474.
  • Krakow KI, Lin S, Yan L. An idealized model of reversed-cycle hot gas defrosting of evaporators, part 2: experimental analysis and validation. ASHRAE Trans. 1993;99:329–338.
  • Liu ZQ, Tang GF, Zhao FY. Dynamic simulation of air-source heat pump during hot-gas defrost. Appl Ther Eng. 2003;23:675–685. doi: 10.1016/S1359-4311(03)00002-4
  • Qu ML, Pan DM, Xia L, et al. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – part II: modeling analysis. Appl Energy. 2012;91:274–280. doi: 10.1016/j.apenergy.2011.08.036
  • Song MJ, Deng SM, Xia L. A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil. Appl Energy. 2014;136:537–547. doi: 10.1016/j.apenergy.2014.09.012
  • Song MJ, Xia L, Deng SM. A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting. Appl Energy. 2016;161:268–278. doi: 10.1016/j.apenergy.2015.10.026
  • Votsis PP, Tassou SA, Wilson DR, et al. Investigation of the performance of a heat pump under frosting and defrosting conditions. Heat Recov Syst CHP. 1989;9:399–406. doi: 10.1016/0890-4332(89)90142-7
  • Hewitt N, Huang MJ. Defrost cycle performance for a circular shape evaporator air source heat pump. Int J Refrig. 2008;31:444–452. doi: 10.1016/j.ijrefrig.2007.07.010
  • Eckman RL. Heat pump defrost controls: a review of past, present, and future technology. ASHRAE Trans. 1987;93:1152–1156.
  • Llewelyn DS. A significant advance in defrost control. Int J Refrig. 1984;7:334–335. doi: 10.1016/0140-7007(84)90125-7
  • Ciricillo SF. Heat pump de-icing/controlling for energy conservation and costs. Proceedings of the Clima 2000 Congress on Heating, Ventilation and Air Conditioning. Copenhagen. 1985;87–92.
  • Heinzen RA. How adaptive defrost maintains refrigeration system efficiency. Aust Refrig Air Cond Heat. 1988;42:16–16.
  • Jiang YQ, Dong JK, Qu ML, et al. A novel defrosting control method based on the degree of refrigerant superheat for air source heat pumps. Int J Refrig. 2013;36(8):2278–2288. doi: 10.1016/j.ijrefrig.2013.05.016
  • Muller ED. A new concept for defrosting refrigeration plants. Kalte. 1975;28:52–54.
  • Hao YL, Iragorry J, Castro D, et al. Microscopic characterization of frost surface during liquid-ice phase change period. Proceedings of the 2002 ASME international mechanical engineering Congress & exposition; New Orleans. LA; 2002. No. IMECE2002-32797.
  • Iragorry J, Tao YX. Frost temperature relations for defrosting sensing system. J Heat Transfer. 2005;127:344–349. doi: 10.1115/1.1860566
  • Lawrence JMW, Evans JA. Refrigerant flow instability as a means to predict the need for defrosting the evaporator in a retail display freezer cabinet. Int J Refrig. 2008;31:107–112. doi: 10.1016/j.ijrefrig.2007.05.015
  • Byun JS, Jeon CD, Jung JH, et al. The application of photo-coupler for frost detecting in an air-source heat pump. Int J Refrig. 2006;29:191–198. doi: 10.1016/j.ijrefrig.2005.06.008
  • Wang W, Feng YC, Zhu JH, et al. Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions. Appl Energy. 2013;112:1138–1145. doi: 10.1016/j.apenergy.2012.12.054
  • Woodley CBC. Saving on the defrost. Air Cond Refrig News. 1989: 62.
  • Paone N, Rossi G. Fiber-optic ice sensors for refrigerators. Proc SPIE. 1991;1511:129–139. doi: 10.1117/12.45985
  • Datta D, Tassou S. Frost prediction on evaporator coils of supermarket display cabinets using artificial neural networks. Proceedings of CLIMA 2000 conference; Brussels. Belgium; 1997;98.
  • Datta D, Tassou S. Implementation of a defrost on demand control strategy on a retail display cabinet. Proceedings of IIF-IIR = COMMISSION D1/B1; Urbana. IL. The US; 2002.
  • Zhu JH, Sun YY, Wang W, et al. A novel temperature-humidity-time defrosting control method based on a frosting map for air-source heat pumps. Int J Refrig. 2015;54:45–54. doi: 10.1016/j.ijrefrig.2015.02.005
  • Lee YB, Ro ST. An experimental study of frost formation on a horizontal cylinder under cross flow. Int J Refrig. 2001;24:468–474. doi: 10.1016/S0140-7007(00)00073-6
  • Huang D, Li Q, Yuan X. Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump. Appl Energy. 2009;86:1697–1703. doi: 10.1016/j.apenergy.2008.11.023
  • Song MJ, Gong GC, Mao N, et al. Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature. http://dx.doi.org/10.1016/j.apenergy.2017.01.068.
  • Wang W, Xiao J, Feng YC, et al. Characteristics of an air source heat pump with novel photoelectric sensors during periodic frost–defrost cycles. Appl Ther Eng. 2013;50:177–186. doi: 10.1016/j.applthermaleng.2012.06.019
  • Qu ML, Xia L, Deng SM, et al. Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps. Build Environ. 2010;45:2354–2361. doi: 10.1016/j.buildenv.2010.04.006
  • Cho H, Kim Y, Jang I. Performance of a showcase refrigeration system with multi-evaporator during on-off cycling and hot-gas bypass defrost. Energy. 2005;30:1915–1930. doi: 10.1016/j.energy.2004.11.006
  • Choi HJ, Kim BS, Kang D, et al. Defrosting method adopting dual hot gas bypass for an air-to-air heat pump. Appl Energy. 2011;88:4544–4555. doi: 10.1016/j.apenergy.2011.05.039
  • Huang D, Yuan XL, Zhang XQ. Effects of fan-starting methods on the reverse-cycle defrost performance of an air-to-water heat pump. Int J Refrig. 2004;27:869–875. doi: 10.1016/j.ijrefrig.2004.04.010
  • Song MJ, Mao N, Deng SM, et al. Experimental investigations on destroying surface tension of melted frost for defrosting performance improvement of a multi-circuit outdoor coil. Appl Ther Eng. 2016;103:1278–1288. doi: 10.1016/j.applthermaleng.2016.03.173
  • Huang D, He ZL, Yuan XL. Dynamic characteristics of an air-to-water heat pump under frosting/defrosting conditions. Appl Ther Eng. 2007;27:1996–2002. doi: 10.1016/j.applthermaleng.2006.12.003
  • Qu ML, Xia L, Deng SM, et al. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – part I: experiments. Appl Energy. 2012;91:122–129. doi: 10.1016/j.apenergy.2011.08.034
  • Payne V, O’Neal DL. Defrost cycle performance for an air-source heat pump with a scroll and a reciprocating compressor. Int J Refrig. 1995;18:107–112. doi: 10.1016/0140-7007(95)93893-O

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.