158
Views
2
CrossRef citations to date
0
Altmetric
Awarded Papers

Equilibrium adsorption isotherm study of binary basic dyes on to bamboo derived activated carbon

, ORCID Icon, & ORCID Icon
Pages 182-192 | Received 14 Mar 2017, Accepted 03 Aug 2017, Published online: 26 Dec 2017

References

  • Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol; 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8
  • Ogugbue CJ, Sawidis T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int. 2011;2011:Article 967925, 11 pages. DOI:10.4061/2011/967925.
  • Zollinger H. Synthesis, properties of organic dyes and pigments, in color chemistry. New York: VCH Publishers; 1987. p. 92–102.
  • Kumar MNVR, Sridhari TR, Bhavani KD, et al. Trends in color removal from textile mill effluents. Colourage. 1998;45:25–34.
  • Couto SR. Dye removal by immobilised fungi. Biotechnol Adv. 2009;27:227–235. doi: 10.1016/j.biotechadv.2008.12.001
  • Hunger K. Important chemical chromophores of dye classes. In: Hunger K, editor. Industrial dyes: chemistry, properties and applications. Weinheim: Wiley-VCH, 2003. p. 13–112.
  • Marungrueng K, Pavasant P. High performance biosorbent (Caulerpa lentilifera) for basic dye removal. Bioresour Technol. 2007;98:1567–1572. doi: 10.1016/j.biortech.2006.06.010
  • Mao J, Won SW, Min J, et al. Removal of Basic Blue 3 from aqueous solution by Corynebacterium glutamicum biomass: biosorption and precipitation mechanism. Korean J Chem Eng. 2008;25:1060–1064. doi: 10.1007/s11814-008-0173-4
  • Al-Degs Y, Khraisheh MAM, Allen SJ, et al. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000;34:927–935. doi: 10.1016/S0043-1354(99)00200-6
  • Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – An overview. Environ Sci Pollut Res. 2013;20:2828–2843. doi: 10.1007/s11356-013-1524-1
  • Roskill. The economics of activated carbon. 8th ed. London (the UK): Roskill Information Services; 2008.
  • The Freedonia Group. World activated carbon. Cleveland, OH (the US): The Freedonia Group; 2016. p. 423.
  • Puziy AM, Poddubnaya OI, Martinez-Alonso A, et al. Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon N Y. 2005;43:2857–2868. doi: 10.1016/j.carbon.2005.06.014
  • Lua AC, Guo J. Microporous oil-palm-shell activated carbon prepared by physical activation for gas-phase adsorption. Langmuir. 2001;17:7112–7117. doi: 10.1021/la010290c
  • Ahmaruzzaman M, Gupta VK. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res. 2011;50:13589–13613. doi: 10.1021/ie201477c
  • Valix M, Cheung WH, McKay G. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere. 2004;56:493–501. doi: 10.1016/j.chemosphere.2004.04.004
  • Asfaram A, Fathi MR, Khodadoust S, et al. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: kinetics, thermodynamic and equilibrium isotherms study of removal. Spectrochim Acta A Mol Biomol Spectrosc. 2014;127:415–421. doi: 10.1016/j.saa.2014.02.092
  • Gupta VK, Nayak A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J. 2012;180:81–90. doi: 10.1016/j.cej.2011.11.006
  • Mittal A, Krishnan L, Gupta VK. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Sep Purif Technol. 2005;43:125–133. doi: 10.1016/j.seppur.2004.10.010
  • Mittal A, Mittal J, Malviya A, et al. Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. J Colloid Interface Sci. 2010;342:518–527. doi: 10.1016/j.jcis.2009.10.046
  • Jain AK, Gupta VK, Bhatnagar A, et al. A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol. 2003;38:463–481. doi: 10.1081/SS-120016585
  • Mittal A, Kaur D, Malviya A, et al. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J Colloid Interface Sci. 2009;337:345–354. doi: 10.1016/j.jcis.2009.05.016
  • Mittal A, Mittal J, Malviya A, et al. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci. 2009;340:16–26. doi: 10.1016/j.jcis.2009.08.019
  • Chan OS, Cheung WH, McKay G. Preparation and characterisation of demineralised tyre derived activated carbon. Carbon N Y. 2011;49:4674–4687. doi: 10.1016/j.carbon.2011.06.065
  • Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv Colloid Interface Sci. 2014;211:93–101. doi: 10.1016/j.cis.2014.06.006
  • Statistics Unit Environment Protection Department. Monitoring of solid waste in Hong Kong waste statistics for 2015. Hong Kong: Environmental Protection Department; 2016.
  • Choy KKH, Barford JP, McKay G. Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis. Chem Eng J. 2005;109:147–165. doi: 10.1016/j.cej.2005.02.030
  • Laine J, Calafat A, Labady M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon N Y. 1989;27:191–195. doi: 10.1016/0008-6223(89)90123-1
  • Jagtoyen M, Derbyshire F. Some considerations of the origins of porosity in carbons from chemically activated wood. Carbon N Y. 1993;31:1185–1192. doi: 10.1016/0008-6223(93)90071-H
  • Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon N Y. 1998;36:1085–1097. doi: 10.1016/S0008-6223(98)00082-7
  • Asada T, Ishihara S, Yamane T, et al. Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci. 2002;48:473–479. doi: 10.1248/jhs.48.473
  • Abe I, Fukuhara T, Iwasaki S, et al. Development of a high density carbonaceous adsorbent from compressed wood. Carbon N Y. 2001;39:1485–1490. doi: 10.1016/S0008-6223(00)00273-6
  • Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study. Dyes Pigments. 2001;51:25–40. doi: 10.1016/S0143-7208(01)00056-0
  • Wu FC, Tseng RL, Juang RS. Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J Environ Sci Health A Tox Hazard Subst Environ Eng. 1999;34:1753–1775. doi: 10.1080/10934529909376927
  • Choy KKH, Allen SJ, McKay G. Multicomponent equilibrium studies for the adsorption of basic dyes from solution on lignite. Adsorption. 2005;11:255–259. doi: 10.1007/s10450-005-5933-4
  • Chan LS, Cheung WH, Allen SJ, et al. Separation of acid-dyes mixture by bamboo derived active carbon. Sep Purif Technol. 2009;67:166–172. doi: 10.1016/j.seppur.2009.03.020
  • Agarwal S, Tyagi I, Gupta VK, et al. Rapid adsorption of ternary dye pollutants onto copper (I) oxide nanoparticle loaded on activated carbon: experimental optimization via response surface methodology. J Environ Chem Eng. 2016;4:1769–1779. doi: 10.1016/j.jece.2016.03.002
  • Asfaram A, Ghaedi M, Azqhandi MHA, et al. Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye. RSC Adv. 2016;6:40502–40516. doi: 10.1039/C6RA01874B
  • Bagheri AR, Ghaedi M, Asfaram A, et al. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology. Ultrason Sonochem. 2017;34:294–304. doi: 10.1016/j.ultsonch.2016.05.047
  • Bagheri AR, Ghaedi M, Asfaram A, et al. Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparticles loaded on activated carbon using second-derivative spectrophotometry. J Taiwan Inst Chem E. 2016;65:212–224. doi: 10.1016/j.jtice.2016.05.004
  • Devaraj M, Saravanan R, Deivasigamani R, et al. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq. 2016;221:930–941. doi: 10.1016/j.molliq.2016.06.028
  • Dil EA, Ghaedi M, Asfaram A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrason Sonochem. 2017;34:792–802. doi: 10.1016/j.ultsonch.2016.07.015
  • Dil EA, Ghaedi M, Ghaedi A, et al. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Inst Chem E. 2016;59:210–220. doi: 10.1016/j.jtice.2015.07.023
  • Mazaheri H, Ghaedi M, Asfaram A, et al. Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. J Mol Liq. 2016;219:667–676. doi: 10.1016/j.molliq.2016.03.050
  • Ansari F, Ghaedi M, Taghdiri M, et al. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method. Ultrason Sonochem. 2016;33:197–209. doi: 10.1016/j.ultsonch.2016.05.004
  • Asfaram A, Ghaedi M, Hajati S, et al. Rapid removal of Auramine-O and methylene blue by ZnS:Cu nanoparticles loaded on activated carbon: A response surface methodology approach. J Taiwan Inst Chem E. 2015;53:80–91. doi: 10.1016/j.jtice.2015.02.026
  • Chan LS, Cheung WH, Lau KST, et al. Production of high surface area activated carbons from waste bamboo scaffolding. HKIE Trans. 2017;3:133–140. DOI:10.1080/1023697X.2017.1345330.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. doi: 10.1021/ja01269a023
  • Horvath G, Kawazoe K. Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn. 1983;16:470–475. doi: 10.1252/jcej.16.470
  • Bansal RP, Donnet J, Stoeckli F. Active carbon. New York: Marcel Dekker; 1988.
  • Butler JAV, Ockrent C. Studies in electrocapillarity Part III The surface tensions of solutions containing two surface-active solutes. J Phys Chem. 1930;34:2841–2859. doi: 10.1021/j150318a015
  • Butler JAV, Ockrent C. Adsorption from solutions containing two solutes. Nature. 1930;125:853–854. doi: 10.1038/125853b0
  • Jain JS, Snoeyink VL. Adsorption from bisolute systems on active carbon. J Water Pollut Control Fed. 1973;45:2463–2479.
  • McKay G, Al-Duri B. Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon. Chem Eng Prog. 1987;22:145–156. doi: 10.1016/0255-2701(87)80041-7
  • Schay GJ, Fejes FP, Szethmary J. Adsorption of gases and gas mixtures. Acta Chim Acad Sci Hung. 1957;12:299–308.
  • Yon CM, Turnock PH. AIChE Symposium Series 67:75, (1971).
  • Mathews AP. Mathematical modeling of multicomponent adsorption in batch reactors. [Ph.D.]. The University of Michigan; 1975.
  • Seidel A, Gelbin D. On applying the ideal adsorbed solution theory to multicomponent adsorption equilibria of dissolved organic-components on activated carbon. Chem Eng Sci. 1988;43:79–88. doi: 10.1016/0009-2509(88)87128-8
  • McKay G, Al-Duri B. Prediction of multicomponent adsorption equilibrium data using empirical correlations. Chem Eng J Biochem Eng J. 1989;41:9–23.
  • Al-Duri B, McKay G. Prediction of binary-system for kinetics of batch adsorption using basic-dyes onto activated carbon. Chem Eng Sci. 1991;46:193–204. doi: 10.1016/0009-2509(91)80129-M
  • Fritz W, Schluend EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous-solutions on activated carbon. Chem Eng Sci. 1974;29:1279–1282. doi: 10.1016/0009-2509(74)80128-4
  • Glover MRL, Young BD, Bryson AW. Modeling the binary adsorption of gold and zinc cyanides onto a strong-base anion-exchange resin. Int J Miner Process. 1990;30:217–228. doi: 10.1016/0301-7516(90)90016-R
  • Young BD, Leroux JD, Bryson AW. The binary adsorption of gold cyanide and ethyl xanthate onto activated carbon. Hydrometallurgy. 1991;26:395–401. doi: 10.1016/0304-386X(91)90014-D
  • McKay G, Al-Duri B. Extended empirical Freundlich isotherm for binary systems – a modified procedure to obtain the correlative constants. Chem Eng Process. 1991;29:133–138. doi: 10.1016/0255-2701(91)85012-D
  • Al-Duri B, McKay G. Pore diffusion - dependence of the effective diffusivity on the initial sorbate concentration in single and multisolute batch adsorption systems. J Chem Technol Biot. 1992;55:245–250. doi: 10.1002/jctb.280550308
  • Kapoor A, Yang RT. Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif. 1989;3:187–192. doi: 10.1016/0950-4214(89)80004-0
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. J Am Chem Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002
  • Freundlich H. Concerning adsorption in solutions. Z Phys Chem. 1906;57:385–470.
  • Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem. 1959;63:1024–1024. doi: 10.1021/j150576a611

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.