227
Views
0
CrossRef citations to date
0
Altmetric
Transactions Papers

Laboratory investigation of performance of a screen type debris-flow countermeasure

ORCID Icon, , , &
Pages 129-144 | Received 30 Nov 2017, Accepted 03 Apr 2018, Published online: 31 Jul 2018

References

  • Takahashi T. Debris flow: mechanics, prediction and countermeasures. London: CRC Press; 2014.
  • Takahashi T. A review of Japanese debris flow research. Int J Eros Cont Eng. 2009;2(1):1–14. doi: 10.13101/ijece.2.1
  • Iverson RM. The physics of debris flows. Rev Geophys. 1997;35(3):245–296. doi: 10.1029/97RG00426
  • Iverson RM. Debris-flow mechanics. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena. Berlin: Springer; 2005. p. 105–134.
  • Iverson RM, Logan M, LaHusen RG, et al. The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res. 2010;115. doi: 10.1029/2009JF001514
  • Viccione G, Genovese M, Rossi F, et al. Physical modelling of laboratory debris flows by using the sodium carboxymethylcellulose (na-cmc). WSEAS Trans Fluid Mech. 2015;10:163–173.
  • Hungr O, Morgan GC, Kellerhals R. Quantitative-analysis of debris torrent hazards for design of remedial measures. Can Geotech J. 1984;21(4):663–677. doi: 10.1139/t84-073
  • Rickenmann D. Empirical relationships for debris flows. Nat Hazards. 1999;19(1):47–77. doi: 10.1023/A:1008064220727
  • VanDine D. Debris flow control structures for forest engineering. Victoria (BC): Res Br BC Min For.; 1996. Work Pap. 08/1996.
  • Scheidl C, Rickenmann D. Empirical prediction of debris flow mobility and deposition on fans. Earth Surf Proc Land. 2010;35(2):157–173.
  • Federico F, Cesali C. An energy-based approach to predict debris flow mobility and analyze empirical relationships. Can Geotech J. 2015;52(12):2113–2133. doi: 10.1139/cgj-2015-0107
  • Devoli G, De Blasio FV, Elverhøi A, et al. Statistical analysis of landslide events in central America and their run-out distance. Geotech Geol Eng. 2009;27(1):23–42. doi: 10.1007/s10706-008-9209-0
  • Sandersen F. The influence of meteorological factors on the initiation of debris flows in Norway. In: Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiss MM, editors. Rapid mass movement as a source of climatic evidence for the Holocene: Palaeoclimate research. Vol. 19, Gustav Fischer Verlag, Stuttgart; 1997. p. 321–332.
  • Glade T. Linking debris-flow hazard assessments with geomorphology. Geomorphology. 2005;66(1):189–213. doi: 10.1016/j.geomorph.2004.09.023
  • Fischer L, Rubensdotter L, Sletten K, et al. Debris flow modeling for susceptibility mapping at regional to national scale in norway. In: Proceedings of the 11th International and 2nd North American Symposium on Landslides; 2012 Jun 3–8; Alberta, Canada; 2012. p. 3–8.
  • Meyer NK, Dyrrdal AV, Frauenfelder R, et al. Hydrometeorological threshold conditions for debris flow initiation in Norway. Nat Hazard Earth Syst. 2012;12:3059–3073. doi: 10.5194/nhess-12-3059-2012
  • Meyer NK, Schwanghart W, Korup O, et al. Estimating the topographic predictability of debris flows. Geomorphology. 2014;207:114–125. doi: 10.1016/j.geomorph.2013.10.030
  • Devoli G, Strauch W, Chávez G, et al. A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides. 2007;4(2):163–176. doi: 10.1007/s10346-006-0074-8
  • Wang G, Sassa K. Factors affecting rainfall-induced flowslides in laboratory flume tests. Geotechnique. 2001;51(7):587–599. doi: 10.1680/geot.2001.51.7.587
  • Blijenberg HM. Application of physical modelling of debris flow triggering to field conditions: limitations posed by boundary conditions. Eng Geol. 2007;91(1):25–33. doi: 10.1016/j.enggeo.2006.12.010
  • Bacchini M, Zannoni A. Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Nat Hazard Earth Syst Sci. 2003;3(1-2):71–79. doi: 10.5194/nhess-3-71-2003
  • Huebl J, Fiebiger G. Debris-flow mitigation measures. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena. Berlin: Springer; 2005. p. 445–487.
  • Mizuyama T. Structural countermeasures for debris flow disasters. Int J Eros Control Eng. 2008;1(2):38–43. doi: 10.13101/ijece.1.38
  • Ashwood W, Hungr O. Estimating total resisting force in flexible barrier impacted by a granular avalanche using physical and numerical modeling. Can Geotech J. 2016;53(10):1700–1717. doi: 10.1139/cgj-2015-0481
  • Bugnion L, Bötticher A, Wendeler C. Large scale field testing of hill slope debris flows resulting in the design of flexible protection barriers. In: Koboltschning G, Hübl J, Braun J, editors. 12th Congress Interpraevent; 2012 Apr 23-26; Grenoble; 2012. p. 59–66.
  • Choi CE, Ng CWW, Song D, et al. Flume investigation of landslide debris-resisting baffles. Can Geotech J. 2014;51(5):540–553. doi: 10.1139/cgj-2013-0115
  • Ng CWW, Choi CE, Song D, et al. Physical modeling of baffles influence on landslide debris mobility. Landslides. 2015;12(1):1–18. doi: 10.1007/s10346-014-0476-y
  • Ng CWW, Choi CE, Su AY, et al. Large-scale successive boulder impacts on a rigid barrier shielded by gabions. Can Geotech J. 2016;53(10):1688–1699. doi: 10.1139/cgj-2016-0073
  • Wendeler C, McArdell B, Rickenmann D, et al. Field testing and numerical modeling of flexible debris flow barriers. In: Ng CWW, Zhang LM, Wang YH, editors. 6th ICPMG; 2006 Aug 4-6; Hong Kong; 2006.
  • Scheidl C, Chiari M, Kaitna R, et al. Analysing debris-flow impact models, based on a small scale modelling approach. Surv Geophys. 2013;34(1):121–140. doi: 10.1007/s10712-012-9199-6
  • Canelli L, Ferrero A, Migliazza M, et al. Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis. Nat Hazard Earth Syst Sci. 2012;12(5):1693–1699. doi: 10.5194/nhess-12-1693-2012
  • Volkwein A, Wendeler C, Guasti G. Design of flexible debris flow barriers. In: Genevois R, Hamilton DL, Prestininzi A, editors. 5th International Conference on Debris-flow Hazard Mitigation: Mech Predic Assess; 2011 Jun 14–17; Padua, Italy; 2011. p. 1093–1100.
  • Song D, Choi C, Ng C, et al. Geophysical flows impacting a flexible barrier: effects of solid-fluid interaction. Landslides. 2017;15(1):99–110. doi: 10.1007/s10346-017-0856-1
  • Vagnon F, Segalini A. Debris flow impact estimation on a rigid barrier. Nat Hazard Earth Syst Sci. 2016;16(7):1691–1697. doi: 10.5194/nhess-16-1691-2016
  • Moriguchi S, Borja RI, Yashima A, et al. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 2009;4(1):57–71. doi: 10.1007/s11440-009-0084-5
  • Jiang YJ, Towhata I. Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng. 2013;46(4):713–729. doi: 10.1007/s00603-012-0293-3
  • Choi CE, Ng CWW, Goodwin GR, et al. Flume investigation of the influence of rigid barrier deflector angle on dry granular overflow mechanisms. Can Geotech J. 2016;53(10):1751–1759. doi: 10.1139/cgj-2015-0248
  • Armanini A, Dalri C, Larcher M. Slit-check dams for controlling debris flow and mudflow. In: Marui H, Mikos M, editors. Disaster mitigation of debris flows, slope failures and landslides: proceedings of the interpraevent international symposium; 2006 Sep 25–26; Tokyo, Japan; 2006. p. 141–148.
  • Choi CE, Law RPH. Performance of landslide debris-resisting baffles. HKIE Transactions. 2015;22(4):235–246. doi: 10.1080/1023697X.2015.1102658
  • Fiskum E. Flomskred-testing av ulike sikringstiltak i modellforsøk [master's thesis]. Trondheim (Norway): Norwegian University of Science and Technology; 2012.
  • Le TMH, Christensen SO, Watn A, et al. Effects of deflection wall on run-up height of debris flow. In: Aversa S, Cascini L, Picarelli L, et al., editors. Landslides and engineered slopes. Experience, theory and practice. CRC Press; 2016. p. 1237–1244.
  • Gonda Y. Function of a debris-flow brake. Int J Eros Cont Eng. 2009;2(1):15–21. doi: 10.13101/ijece.2.15
  • Kim Y. Study on hydraulic characteristics of debris flow breakers and sabo dams with a flap [dissertation]. Japan: Kyoto University; 2013.
  • Xie T, Yang H, Wei F, et al. A new water–sediment separation structure for debris flow defense and its model test. Bull Eng Geol Environ. 2014;73(4):947–958. doi: 10.1007/s10064-014-0585-9
  • Cascini L, Cuomo S, Pastor M, et al. SPH-FDM propagation and pore water pressure modelling for debris flows in flume tests. Eng Geol. 2016;213:74–83. doi: 10.1016/j.enggeo.2016.08.007
  • Fiebiger G. Structures of debris flow countermeasures. In: Chen Cl, editor. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; 1997 Aug 7–9; San Francisco (CA). American Society of Civil Engineers (ASCE); 1997. p. 596–605.
  • Norges Vassdrags-og Energidirektorat (NVE). Plan for skredfarekartlegging - delrapport jordskred og flomskred. Norway: Norges Vassdrags-og Energidirektorat (NVE) - Norwegian Water Resources and Energy Directorate; 2011. Report No. 16/2011.
  • Norwegian Public Roads Administration. Debris flows and slush avalanches. Norway: Norwegian Public Roads Administration (NPRA); 2016. Handbook V139.
  • Norges Vassdrags-og Energidirektorat (NVE). Preliminary regionalization and susceptibility analysis for landslide early warning purposes in norway. Norway: Norges Vassdrags-og Energidirektorat (NVE) - Norwegian Water Resources and Energy Directorate; 2014. Report No. 37/2014.
  • International Centre for Water Hazard and Risk Management. Debris-flow dewatering brakes: a promising tool for disaster management in developing countries. Japan: Public Works Research Institute; 2008. Newsletter 3.
  • Ochiai H, Sammori T, Okada Y. Landslide experiments on artificial and natural slopes. In: Sassa K, Fukuoka H, Wang F, et al., editors. Progress in landslide science. Berlin: Springer; 2007. p. 209–226.
  • Lien HP. Design of slit dams for controlling stony debris flows. Int J Sediment Res. 2003;18(1):74–87.
  • International Centre for Water Hazard and Risk Management. Testing and demonstrating a technology to cope with debris flows in mountain regions. The Philippines: International Centre for Water Hazard and Risk Management; 2009. Report.
  • Savage SB, Iverson RM. Surge dynamics coupled to pore-pressure evolution in debris flows. Debris-Flow Hazards Mitigation: Mech Predict Assess. 2003;1–2:503–514.
  • Major JJ, Iverson RM. Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins. Geol Soc Am Bull. 1999;111(10):1424–1434. doi: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2
  • Huebl J, Suda J, Proske D, et al. Debris flow impact estimation. In: Popovska C, editor. International Symposium on water Management and Hydraulic Engineering; 2009 Sep 1-5; Ohrid, Macadonia; 2009. p. 137–148.
  • Laache E. Model testing of the drainage screen type debris flow breaker [master's thesis]. Trondheim, Norway: Norwegian University of Science and Technology; 2016.
  • Watanabe M, Mizuyama T, Uehara S. Review of debris flow countermeasure facilities. J Japan Eros Control Eng Soc. 1980;115:40–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.